aboutsummaryrefslogtreecommitdiff
path: root/sem6/prob/stat2
diff options
context:
space:
mode:
Diffstat (limited to 'sem6/prob/stat2')
-rw-r--r--sem6/prob/stat2/opgaver.tex23
1 files changed, 23 insertions, 0 deletions
diff --git a/sem6/prob/stat2/opgaver.tex b/sem6/prob/stat2/opgaver.tex
new file mode 100644
index 0000000..0596cce
--- /dev/null
+++ b/sem6/prob/stat2/opgaver.tex
@@ -0,0 +1,23 @@
+\title{Opgaver til Statistics Module 2}
+
+\section{Exercise 2}
+
+\subsection{Opgave A}
+
+Her kan vi sige at $y_i \sim \mathcal{N}(S', \sigma^2)$ hvor $S' = \alpha S$ og derfor er det at estimere $S'$ og isolere for $d$.
+
+Først kan vi estimere for $S'$, og eftersom $y_i$ er normal fordelt kan man estimere mean $S'$ med: \[
+ \hat{\mu} = \sum_{i=1}^{n} \frac {x_i} n
+.\]
+
+Nu kan vi isolere for $d$.
+\begin{align*}
+ S' = \hat{\mu} = S \cdot \frac {0.5} d = \frac 1 n \sum_{i=1}^{n} x_i \\
+ d = S \cdot \frac{0.5 n}{\sum_{i=1}^{n} x_i}
+\end{align*}
+
+\section{Exercise 3}
+
+\subsection{Part 1}
+
+Okay jeg fortsætter på papir.