aboutsummaryrefslogtreecommitdiff
path: root/sem6/prob/m2/opgaver.md
diff options
context:
space:
mode:
Diffstat (limited to 'sem6/prob/m2/opgaver.md')
-rw-r--r--sem6/prob/m2/opgaver.md30
1 files changed, 15 insertions, 15 deletions
diff --git a/sem6/prob/m2/opgaver.md b/sem6/prob/m2/opgaver.md
index 0ce9c77..601aa86 100644
--- a/sem6/prob/m2/opgaver.md
+++ b/sem6/prob/m2/opgaver.md
@@ -5,16 +5,16 @@
Man kan sige at chances for at en kvinde kommer først er 50%.
$$
-P(1) = \frac 1 2
+P(1) = \frac 1 2 = 0.5
$$
-Herefter kræver det at en mand for først og en kvinde får næste.
+Herefter kræver det at en mand får først og en kvinde får næste.
-$$
-P(2) = \frac 5 10 \cdot \frac 5 9 \\
-P(3) = \frac 5 10 \cdot \frac 4 9 \frac 5 8 \\
-P(4) = \frac 5 10 \cdot \frac 4 9 \frac 3 8 \cdot \frac 5 8
-$$
+\begin{align*}
+ P(2) &= \frac 5 {10} \cdot \frac 5 9 = 0.2778\\
+ P(3) &= \frac 5 {10} \cdot \frac 4 9 \cdot \frac 5 8 = 0.1389 \\
+ P(4) &= \frac 5 {10} \cdot \frac 4 9 \cdot \frac 3 8 \cdot \frac 5 7 = 0.0595
+\end{align*}
osv.
@@ -52,22 +52,22 @@ $$
Først skal man finde $\lambda$.
-$$
- \int_{0}^{\infty} \lambda e^{- \frac x {100}} \mathrm{dx} = 1 \\
- \left[ - \lambda 100 \cdot e^{- \frac x {100}}\right]_{0}^{\infty} = 1 \\
- \lambda \cdot 100 = 1 \\
- \lambda = \frac 1 {100}
-$$
+\begin{align*}
+ \int_{0}^{\infty} \lambda e^{- \frac x {100}} \mathrm{dx} &= 1 \\
+ \left[ - \lambda 100 \cdot e^{- \frac x {100}}\right]_{0}^{\infty} &= 1 \\
+ \lambda \cdot 100 &= 1 \\
+ \lambda &= \frac 1 {100}
+\end{align*}
Nu kan man sætte 50 til 150 ind.
$$
- P(50 < x \leq 150) = \int_{50}^{150} f(x) \mathrm{dx} = - e^{- \frac {150} {100}} + e^{ - \frac {50} {100}} = 0.3834
+ P(50 < x \leq 150) = \int_{50}^{150} f(x) \mathrm{dx} = \left[ - 100 \cdot \frac 1 {100} \cdot e^{- \frac x {100}} \right]_{50}^{150} = -e^{- \frac{150} {100}} + e^{ - \frac {50} {100}} \approx 0.3834
$$
Derefter kan vi tage fra 0 til 100.
$$
- P(x < 100) = \int_{0}^{100} f(x) \mathrm{dx} = - e^{- \frac {100} {100}} = - \frac 1 e
+ P(x < 100) = \int_{0}^{100} f(x) \mathrm{dx} = - e^{- \frac {100} {100}} + 1 = 1 - \frac 1 e \approx 0.6321
$$