aboutsummaryrefslogtreecommitdiff
path: root/sem4/hpp/m9
diff options
context:
space:
mode:
authorJulian T <julian@jtle.dk>2020-05-16 16:52:12 +0200
committerJulian T <julian@jtle.dk>2020-05-16 16:52:12 +0200
commit284afc630b3d0dd6c0079c6d3e83a73d6d1193e0 (patch)
tree3197f3d38587e53b1e4413813bc41e863ef81413 /sem4/hpp/m9
parent56f60d3409c035e12b1d7e21c14ff4f8ab43ecf9 (diff)
Added hpp assignments
Diffstat (limited to 'sem4/hpp/m9')
-rw-r--r--sem4/hpp/m9/opgave3.py31
-rw-r--r--sem4/hpp/m9/opgave5.py59
-rw-r--r--sem4/hpp/m9/opgave6.py59
-rw-r--r--sem4/hpp/m9/opgaver.md7
4 files changed, 156 insertions, 0 deletions
diff --git a/sem4/hpp/m9/opgave3.py b/sem4/hpp/m9/opgave3.py
new file mode 100644
index 0000000..15505eb
--- /dev/null
+++ b/sem4/hpp/m9/opgave3.py
@@ -0,0 +1,31 @@
+import numpy as np
+
+def matrixmult(a, b):
+ res = np.empty((a.shape[0], b.shape[1]))
+ for ic, c in enumerate(b.T):
+ for ir, r in enumerate(a):
+ res[ir][ic] = np.dot(c, r)
+
+ return res
+
+a = np.random.random((100, 300))
+b = np.random.random((300, 100))
+
+print("a")
+print(a)
+print("b")
+print(b)
+
+custom = matrixmult(a, b)
+
+ref = a @ b
+
+print("custom")
+print(custom)
+print("ref")
+print(ref)
+
+if np.array_equal(custom, ref):
+ print("Yay they are the same, well done")
+else:
+ print("Not the same, bummer")
diff --git a/sem4/hpp/m9/opgave5.py b/sem4/hpp/m9/opgave5.py
new file mode 100644
index 0000000..0824ef0
--- /dev/null
+++ b/sem4/hpp/m9/opgave5.py
@@ -0,0 +1,59 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+
+# A short template to test small kernels.
+#
+
+import numpy as np
+import pyopencl as cl
+
+VEC_SIZE = 50000
+
+# Create the context (containing platform and device information) and command queue.
+context = cl.create_some_context()
+cmd_queue = cl.CommandQueue(context)
+
+# Create the host side data and a empty array to hold the result.
+a_host = np.random.rand(VEC_SIZE).astype(np.float32)
+b_host = np.random.rand(VEC_SIZE).astype(np.float32)
+result_host = np.empty_like(a_host)
+
+# Create a device side read-only memory buffer and copy the data from "hostbuf" into it.
+# Create as many
+# You can find the other possible mem_flags values at
+# https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateBuffer.html
+mf = cl.mem_flags
+a_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_host)
+b_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_host)
+result_device = cl.Buffer(context, mf.WRITE_ONLY, a_host.nbytes)
+
+# Source of the kernel itself.
+kernel_source = """
+__kernel void sum(
+ __global const float *a_device,
+ __global const float *b_device,
+ __global float *result_device)
+{
+ int gid = get_global_id(0);
+ result_device[gid] = a_device[gid] * b_device[gid];
+}
+"""
+
+# If you want to keep the kernel in a seperate file uncomment this line and adjust the filename
+#kernel_source = open("kernel.cl").read()
+
+# Create a new program from the kernel and build the source.
+prog = cl.Program(context, kernel_source).build()
+
+# Execute the "sum" kernel in the program. Parameters are:
+#
+# Command queue Work group size Kernel param 1
+# ↓ Global grid size ↓ Kernel param 0 ↓ Kernel param 2
+# ↓ ↓ ↓ ↓ ↓ ↓
+prog.sum(cmd_queue, a_host.shape, None, a_device, b_device, result_device)
+
+# Copy the result back from device to host.
+cl.enqueue_copy(cmd_queue, result_host, result_device)
+
+# Check the results in the host array with Numpy.
+print("All elements close?", np.allclose(result_host, (a_host * b_host)))
diff --git a/sem4/hpp/m9/opgave6.py b/sem4/hpp/m9/opgave6.py
new file mode 100644
index 0000000..3921551
--- /dev/null
+++ b/sem4/hpp/m9/opgave6.py
@@ -0,0 +1,59 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+
+# A short template to test small kernels.
+#
+
+import numpy as np
+import pyopencl as cl
+
+VEC_SIZE = 50000
+
+# Create the context (containing platform and device information) and command queue.
+context = cl.create_some_context()
+cmd_queue = cl.CommandQueue(context)
+
+# Create the host side data and a empty array to hold the result.
+a_host = np.random.rand(VEC_SIZE).astype(np.float32)
+b_host = np.random.rand(VEC_SIZE).astype(np.float32)
+result_host = np.empty_like(a_host)
+
+# Create a device side read-only memory buffer and copy the data from "hostbuf" into it.
+# Create as many
+# You can find the other possible mem_flags values at
+# https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateBuffer.html
+mf = cl.mem_flags
+a_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_host)
+b_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_host)
+result_device = cl.Buffer(context, mf.WRITE_ONLY, a_host.nbytes)
+
+# Source of the kernel itself.
+kernel_source = """
+__kernel void sum(
+ __global const float *a_device,
+ __global const float *b_device,
+ __global float *result_device)
+{
+ int gid = get_global_id(0);
+ result_device[gid] = a_device[gid] * b_device[gid];
+}
+"""
+
+# If you want to keep the kernel in a seperate file uncomment this line and adjust the filename
+#kernel_source = open("kernel.cl").read()
+
+# Create a new program from the kernel and build the source.
+prog = cl.Program(context, kernel_source).build()
+
+# Execute the "sum" kernel in the program. Parameters are:
+#
+# Command queue Work group size Kernel param 1
+# ↓ Global grid size ↓ Kernel param 0 ↓ Kernel param 2
+# ↓ ↓ ↓ ↓ ↓ ↓
+prog.sum(cmd_queue, a_host.shape, None, a_device, b_device, result_device)
+
+# Copy the result back from device to host.
+cl.enqueue_copy(cmd_queue, result_host, result_device)
+
+# Check the results in the host array with Numpy.
+print("All elements close?", np.allclose(np.sum(result_host), np.dot(a_host, b_host)))
diff --git a/sem4/hpp/m9/opgaver.md b/sem4/hpp/m9/opgaver.md
new file mode 100644
index 0000000..15ccf1e
--- /dev/null
+++ b/sem4/hpp/m9/opgaver.md
@@ -0,0 +1,7 @@
+## Opgave 1, 2
+
+> How many operations are involved in the multiplication?
+> Assume that all three matricies are of the data type float (IEEE754, aka Binary32, 4 bytes floating point). How much storage is needed to perform the operation?
+
+
+Løste denne i notesbog