diff options
author | Julian T <julian@jtle.dk> | 2020-05-16 16:52:12 +0200 |
---|---|---|
committer | Julian T <julian@jtle.dk> | 2020-05-16 16:52:12 +0200 |
commit | 284afc630b3d0dd6c0079c6d3e83a73d6d1193e0 (patch) | |
tree | 3197f3d38587e53b1e4413813bc41e863ef81413 | |
parent | 56f60d3409c035e12b1d7e21c14ff4f8ab43ecf9 (diff) |
Added hpp assignments
-rw-r--r-- | sem4/hpp/m10/opg1.py | 17 | ||||
-rw-r--r-- | sem4/hpp/m10/opg2.py | 95 | ||||
-rw-r--r-- | sem4/hpp/m10/template.py | 59 | ||||
-rw-r--r-- | sem4/hpp/m9/opgave3.py | 31 | ||||
-rw-r--r-- | sem4/hpp/m9/opgave5.py | 59 | ||||
-rw-r--r-- | sem4/hpp/m9/opgave6.py | 59 | ||||
-rw-r--r-- | sem4/hpp/m9/opgaver.md | 7 |
7 files changed, 327 insertions, 0 deletions
diff --git a/sem4/hpp/m10/opg1.py b/sem4/hpp/m10/opg1.py new file mode 100644 index 0000000..b8de12a --- /dev/null +++ b/sem4/hpp/m10/opg1.py @@ -0,0 +1,17 @@ +#!/usr/bin/env python3 +# Measure the performance of your Python matrix multiplication +import numpy as np +import time + +size=1000 + +a = np.random.random((size, size)) +b = np.random.random((size, size)) + +start = time.time() +result = a @ b +end = time.time() + + +print(result) +print(f"Took { end - start } seconds") diff --git a/sem4/hpp/m10/opg2.py b/sem4/hpp/m10/opg2.py new file mode 100644 index 0000000..6602d4d --- /dev/null +++ b/sem4/hpp/m10/opg2.py @@ -0,0 +1,95 @@ +#!/usr/bin/env python3 +# Make a "naive" implementation of a matrix multiplication. +# - Start from the template from last lecture - all global memory, each work item calculates one value of the result independent of the others, and so on. +# - Feel free to make assumptions on the size, for instance that the matrices are square, small enough to fit in GPU memory and so on. +# - Make sure to test your kernel thoroughly enough that you trust it is correct. + +# Im asuming that the buffers fit in memory +import numpy as np +import pyopencl as cl +import time + +# Source of the kernel itself. +kernel_source = """ +__kernel void matrixmult( + const uint shared_dim, + __global const float *a_device, + __global const float *b_device, + __global float *result_device) +{ + // get the i'th row of matrix a + int index_a = get_global_id(0) * shared_dim; + + // get the start of the i'th column of b. + // Remember we should index this by jumping b's row size (bcols, or get_global_size(1)). + int index_b = get_global_id(1); + int b_jump = get_global_size(1); + + // Do the vector dot + float result = 0; + for (int i = 0; i < shared_dim; i++) { + result += a_device[index_a + i] * b_device[index_b]; + + // Remember we need to move b by it's column size to + // skip to the next row + index_b += b_jump; + } + + // Save the result + result_device[get_global_id(0) * get_global_size(1) + get_global_id(1)] = result; +} +""" + +# matrix a rows +arows = 500 +bcols = 1000 +# A columns and b rows +shared = 1000 + +# Create the context (containing platform and device information) and command queue. +context = cl.create_some_context() +cmd_queue = cl.CommandQueue(context) + +# Create the host side data and a empty array to hold the result. +a_host = np.random.random((arows, shared)).astype(np.float32) +b_host = np.random.random((shared, bcols)).astype(np.float32) +result_host = np.empty((arows, bcols)).astype(np.float32) + +# If you want to keep the kernel in a seperate file uncomment this line and adjust the filename +#kernel_source = open("kernel.cl").read() + +# Create a new program from the kernel and build the source. +prog = cl.Program(context, kernel_source).build() + +start = time.time() +# Create a device side read-only memory buffer and copy the data from "hostbuf" into it. +# Create as many +# You can find the other possible mem_flags values at +# https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateBuffer.html +mf = cl.mem_flags +a_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_host) +b_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_host) +result_device = cl.Buffer(context, mf.WRITE_ONLY, result_host.nbytes) + +# Execute the "sum" kernel in the program. Parameters are: +# +# Command queue Work group size Kernel param 1 +# ↓ Global grid size ↓ Kernel param 0 ↓ Kernel param 2 +# ↓ ↓ ↓ ↓ ↓ ↓ +prog.matrixmult(cmd_queue, result_host.shape, None, np.uint32(shared), a_device, b_device, result_device) + +# Copy the result back from device to host. +cl.enqueue_copy(cmd_queue, result_host, result_device) + +end = time.time() + +print(f"GPU time {end - start} sec") + + +start = time.time() +hostcalc = a_host @ b_host +end = time.time() +print(f"CPU time {end - start} sec") + +# Check the results in the host array with Numpy. +print("All elements close?", np.allclose(result_host, hostcalc)) diff --git a/sem4/hpp/m10/template.py b/sem4/hpp/m10/template.py new file mode 100644 index 0000000..0824ef0 --- /dev/null +++ b/sem4/hpp/m10/template.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +# A short template to test small kernels. +# + +import numpy as np +import pyopencl as cl + +VEC_SIZE = 50000 + +# Create the context (containing platform and device information) and command queue. +context = cl.create_some_context() +cmd_queue = cl.CommandQueue(context) + +# Create the host side data and a empty array to hold the result. +a_host = np.random.rand(VEC_SIZE).astype(np.float32) +b_host = np.random.rand(VEC_SIZE).astype(np.float32) +result_host = np.empty_like(a_host) + +# Create a device side read-only memory buffer and copy the data from "hostbuf" into it. +# Create as many +# You can find the other possible mem_flags values at +# https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateBuffer.html +mf = cl.mem_flags +a_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_host) +b_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_host) +result_device = cl.Buffer(context, mf.WRITE_ONLY, a_host.nbytes) + +# Source of the kernel itself. +kernel_source = """ +__kernel void sum( + __global const float *a_device, + __global const float *b_device, + __global float *result_device) +{ + int gid = get_global_id(0); + result_device[gid] = a_device[gid] * b_device[gid]; +} +""" + +# If you want to keep the kernel in a seperate file uncomment this line and adjust the filename +#kernel_source = open("kernel.cl").read() + +# Create a new program from the kernel and build the source. +prog = cl.Program(context, kernel_source).build() + +# Execute the "sum" kernel in the program. Parameters are: +# +# Command queue Work group size Kernel param 1 +# ↓ Global grid size ↓ Kernel param 0 ↓ Kernel param 2 +# ↓ ↓ ↓ ↓ ↓ ↓ +prog.sum(cmd_queue, a_host.shape, None, a_device, b_device, result_device) + +# Copy the result back from device to host. +cl.enqueue_copy(cmd_queue, result_host, result_device) + +# Check the results in the host array with Numpy. +print("All elements close?", np.allclose(result_host, (a_host * b_host))) diff --git a/sem4/hpp/m9/opgave3.py b/sem4/hpp/m9/opgave3.py new file mode 100644 index 0000000..15505eb --- /dev/null +++ b/sem4/hpp/m9/opgave3.py @@ -0,0 +1,31 @@ +import numpy as np + +def matrixmult(a, b): + res = np.empty((a.shape[0], b.shape[1])) + for ic, c in enumerate(b.T): + for ir, r in enumerate(a): + res[ir][ic] = np.dot(c, r) + + return res + +a = np.random.random((100, 300)) +b = np.random.random((300, 100)) + +print("a") +print(a) +print("b") +print(b) + +custom = matrixmult(a, b) + +ref = a @ b + +print("custom") +print(custom) +print("ref") +print(ref) + +if np.array_equal(custom, ref): + print("Yay they are the same, well done") +else: + print("Not the same, bummer") diff --git a/sem4/hpp/m9/opgave5.py b/sem4/hpp/m9/opgave5.py new file mode 100644 index 0000000..0824ef0 --- /dev/null +++ b/sem4/hpp/m9/opgave5.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +# A short template to test small kernels. +# + +import numpy as np +import pyopencl as cl + +VEC_SIZE = 50000 + +# Create the context (containing platform and device information) and command queue. +context = cl.create_some_context() +cmd_queue = cl.CommandQueue(context) + +# Create the host side data and a empty array to hold the result. +a_host = np.random.rand(VEC_SIZE).astype(np.float32) +b_host = np.random.rand(VEC_SIZE).astype(np.float32) +result_host = np.empty_like(a_host) + +# Create a device side read-only memory buffer and copy the data from "hostbuf" into it. +# Create as many +# You can find the other possible mem_flags values at +# https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateBuffer.html +mf = cl.mem_flags +a_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_host) +b_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_host) +result_device = cl.Buffer(context, mf.WRITE_ONLY, a_host.nbytes) + +# Source of the kernel itself. +kernel_source = """ +__kernel void sum( + __global const float *a_device, + __global const float *b_device, + __global float *result_device) +{ + int gid = get_global_id(0); + result_device[gid] = a_device[gid] * b_device[gid]; +} +""" + +# If you want to keep the kernel in a seperate file uncomment this line and adjust the filename +#kernel_source = open("kernel.cl").read() + +# Create a new program from the kernel and build the source. +prog = cl.Program(context, kernel_source).build() + +# Execute the "sum" kernel in the program. Parameters are: +# +# Command queue Work group size Kernel param 1 +# ↓ Global grid size ↓ Kernel param 0 ↓ Kernel param 2 +# ↓ ↓ ↓ ↓ ↓ ↓ +prog.sum(cmd_queue, a_host.shape, None, a_device, b_device, result_device) + +# Copy the result back from device to host. +cl.enqueue_copy(cmd_queue, result_host, result_device) + +# Check the results in the host array with Numpy. +print("All elements close?", np.allclose(result_host, (a_host * b_host))) diff --git a/sem4/hpp/m9/opgave6.py b/sem4/hpp/m9/opgave6.py new file mode 100644 index 0000000..3921551 --- /dev/null +++ b/sem4/hpp/m9/opgave6.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +# A short template to test small kernels. +# + +import numpy as np +import pyopencl as cl + +VEC_SIZE = 50000 + +# Create the context (containing platform and device information) and command queue. +context = cl.create_some_context() +cmd_queue = cl.CommandQueue(context) + +# Create the host side data and a empty array to hold the result. +a_host = np.random.rand(VEC_SIZE).astype(np.float32) +b_host = np.random.rand(VEC_SIZE).astype(np.float32) +result_host = np.empty_like(a_host) + +# Create a device side read-only memory buffer and copy the data from "hostbuf" into it. +# Create as many +# You can find the other possible mem_flags values at +# https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateBuffer.html +mf = cl.mem_flags +a_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_host) +b_device = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_host) +result_device = cl.Buffer(context, mf.WRITE_ONLY, a_host.nbytes) + +# Source of the kernel itself. +kernel_source = """ +__kernel void sum( + __global const float *a_device, + __global const float *b_device, + __global float *result_device) +{ + int gid = get_global_id(0); + result_device[gid] = a_device[gid] * b_device[gid]; +} +""" + +# If you want to keep the kernel in a seperate file uncomment this line and adjust the filename +#kernel_source = open("kernel.cl").read() + +# Create a new program from the kernel and build the source. +prog = cl.Program(context, kernel_source).build() + +# Execute the "sum" kernel in the program. Parameters are: +# +# Command queue Work group size Kernel param 1 +# ↓ Global grid size ↓ Kernel param 0 ↓ Kernel param 2 +# ↓ ↓ ↓ ↓ ↓ ↓ +prog.sum(cmd_queue, a_host.shape, None, a_device, b_device, result_device) + +# Copy the result back from device to host. +cl.enqueue_copy(cmd_queue, result_host, result_device) + +# Check the results in the host array with Numpy. +print("All elements close?", np.allclose(np.sum(result_host), np.dot(a_host, b_host))) diff --git a/sem4/hpp/m9/opgaver.md b/sem4/hpp/m9/opgaver.md new file mode 100644 index 0000000..15ccf1e --- /dev/null +++ b/sem4/hpp/m9/opgaver.md @@ -0,0 +1,7 @@ +## Opgave 1, 2 + +> How many operations are involved in the multiplication? +> Assume that all three matricies are of the data type float (IEEE754, aka Binary32, 4 bytes floating point). How much storage is needed to perform the operation? + + +Løste denne i notesbog |