diff options
author | Julian T <julian@jtle.dk> | 2021-02-23 12:34:55 +0100 |
---|---|---|
committer | Julian T <julian@jtle.dk> | 2021-02-23 12:34:55 +0100 |
commit | 15e3da75a9e78c3ab9b03aa5e7c79b73cf1a2a47 (patch) | |
tree | 5281a4abe11a8ffd97627a944e1091f83bd0b8df | |
parent | 15a334af05a1f53e37e3ee98021b0032035a7eee (diff) |
Add notes for prob m5
-rwxr-xr-x | render.py | 1 | ||||
-rw-r--r-- | sem6/prob/m4/notes.tex | 4 | ||||
-rw-r--r-- | sem6/prob/m5/noter.tex | 94 |
3 files changed, 99 insertions, 0 deletions
@@ -14,6 +14,7 @@ tex_template = """\\documentclass[12pt]{article} \\newtheorem{definition}{Definition} \\newtheorem{lemma}{Lemma} +\\newtheorem{theorem}{Theorem} {% if p is not none %} \\title{ {{title}} } diff --git a/sem6/prob/m4/notes.tex b/sem6/prob/m4/notes.tex index 4a1aea0..227d8bc 100644 --- a/sem6/prob/m4/notes.tex +++ b/sem6/prob/m4/notes.tex @@ -143,3 +143,7 @@ The Poisson distribution can be used to approximate binomial distribution. Two independent Poisson r.v. added together give a poisson distribution with $\lambda = \lambda_1 + \lambda_2$. \end{lemma} + +\begin{lemma} + The interarrival between events are a exponential random variable with rate $\lambda$. +\end{lemma} diff --git a/sem6/prob/m5/noter.tex b/sem6/prob/m5/noter.tex new file mode 100644 index 0000000..bce20d4 --- /dev/null +++ b/sem6/prob/m5/noter.tex @@ -0,0 +1,94 @@ +\title{Continuous Distributions} + +\section{Uniform} + +Select a points in the interval $[a, b]$. + +\begin{definition} + If a random variable $X \sim Uniform(a, b)$ then its PDF is: \[ + f_X(x) = \left\{ + \begin{array}{ll} + \frac{1}{b - a} & a < x < b \\ + 0 & x < a \wedge x > b + \end{array} + \right. + .\] +\end{definition} + +The mean value of $X$ is: \[ + E[X] = \frac{b+a}{2} +.\] + +And the variance is: \[ + Var(X) = \frac{(a-b)^{2}}{12} +.\] + +\section{Exponential} + +Used to model time in between events, or the lifetime of things. +This distribution can be seen as the continuous version of \emph{geometric distribution}. + +\begin{definition} + A random variable $X \sim Exponential(\lambda)$ has PDF: \[ + f_X(x) = \left\{ + \begin{array}{ll} + \lambda \cdot e^{-\lambda x} & x > 0 \\ + 0 + \end{array} + \right. + .\] +\end{definition} + +It has the CDF: \[ + F_X(x) = \left(1 - e^{-\lambda x}\right) u(x) +.\] + +The expected value is: \[ + E[X] = \frac{1}{\lambda} +.\] + +And the variance is: \[ + Var(X) = \frac{1}{\lambda^{2}} +.\] + +\begin{theorem} + An exponential random variable is \emph{memoryless} meaning: \[ + P(X > x + a | X > a) = P(X > x), \quad \mathrm{for} \; a, x \geq 0 + .\] +\end{theorem} + +\section{Gaussian or Normal distribution} + +The most important distribution is the normal distribution. + +\begin{definition} + A random variable $Z \sim N(0, 1)$ has PDF: \[ + f_Z(z) = \frac{1}{\sqrt{2 \pi}} \exp\left( - \frac{z^{2}}{2} \right), \quad \mathrm{for all} \; x \in \mathbb{R} + .\] + And $E[Z] = 0, \quad Var(Z) = 1$. +\end{definition} + +The scaling of the exponential function is to make sure that the area under the PDF is 1. + +The CDF of the normal distribution is denoted with $\Phi(x)$, and is defined with a nasty intergral which has to closed form. +This is often looked up in a table. + +\subsection{Scaling and shifting} + +One can scale and shift $N(0, 1)$ to make it have other variances and means. + +\[ + X = \sigma Z + \mu, \quad \mathrm{where} \; \sigma > 0 +.\] + +And in reverse $Z = \frac{X- \mu}{\sigma}$. + +Then $E[X] = \mu$ and $Var(X) = \sigma^{2}$. + +Meaning: \[ + X \sim N(\mu, \sigma^{2}) +.\] + +The probability of an interval can be found with: \[ + P(a < X \leq b) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right) +.\] |