aboutsummaryrefslogtreecommitdiff
path: root/src/render.cpp
blob: 560186305d5519a48c0e58a52a4b1eec3520fd55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include "render.hpp"
#include "vector.hpp"
#include "common.hpp"

#include <math.h>
#include <iostream>

#define FOV 1.74533

const Vec3d up = Vec3d(0, 1, 0);

void Color::clamp() {
    if (m_x > 1) { m_x = 1; }
    if (m_y > 1) { m_y = 1; }
    if (m_z > 1) { m_z = 1; }
}

Renderer::Renderer(const Scene &scn, Vec3d eye, Vec3d target, unsigned width, unsigned height) : 
    m_scn(scn)
{
    m_eye = eye;
    m_target = target;
    m_width = width;
    m_height = height;

    recalculate();
}

void Renderer::recalculate() {
    auto tmp = m_target - m_eye;

    // Orthogonal vector to E
    auto b = up.cross(tmp);

    b.normalize();
    tmp.normalize();

    auto v = tmp.cross(b);

    // Calculate size of viewplane
    double gx = tan( FOV / 2);
    double gy = gx * ((double) m_height / m_width);

    // Calculate scaling vectors
    m_qx = b * ((2 * gx) / (m_width - 1));
    m_qy = v * ((2 * gy) / (m_height - 1));

    // Calculate starting point
    m_blc = tmp - (b * gx) - (v * gy);
}

Ray Renderer::findray(double x, double y) const {
    auto dir = m_blc + (m_qx * x) + (m_qy * y);
    return Ray(m_eye, dir, true);
}

Color Renderer::render(unsigned x, unsigned y) {
    auto r = findray(x, y);
    return pathtrace_sample(r, 0);
}

Color Renderer::pathtrace_sample(const Ray &r, unsigned hop) {
    double dist;
    auto res = cast_ray(r, 0, &dist);

    if (!res) {
        return Color(0, 0, 0);
    }

    // Calculate endpoint
    auto end = r.m_start + r.m_direction * dist;

    auto norm = res->norm_at(end, r.m_direction);

    // Simulate single light
    auto l = Vec3d(0, 7, 0);

    auto tolight = l - end;
    auto distance = tolight.length();
    tolight.normalize();
    auto lightray = Ray(end, tolight, false);

    if (cast_ray(lightray, distance, nullptr)) {
        return Color(0, 0, 0);
    }

    auto green = Color(0, 1, 0);
    return Color(green * norm.dot(tolight));
}

const Shape* Renderer::cast_ray(const Ray &r, double chk_dist, double *dist_ret) {
    const Shape *smallest = nullptr;
    double dist = 0;

    for (auto obj : m_scn.objs) {
        if (!obj) {
            continue;
        }
        auto d = obj->intersect(r, false);
        if (d > ZERO_APPROX) {
            if (chk_dist > 0 && d < chk_dist) {
                dist = d; smallest = obj;
                goto exit;
            }
            if (d < dist || smallest == nullptr) {
                dist = d; smallest = obj;
            }
        }
    }

    if (chk_dist > 0) {
        // If we reach this it means none of the
        // object where within distance.
        return nullptr;
    }

exit:

    if (dist_ret) {
        *dist_ret = dist;
    }

    return smallest;
}