1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
|
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include "vector.h"
#include "ctranslate.h"
#include "ray.h"
#define PI 3.14159265359
int ray_trace_recur(space_t *s, color_t *dest, ray_t *ray, unsigned hop, COORD_T scale, void *seed);
// https://en.wikipedia.org/wiki/Line%E2%80%93sphere_intersection
// http://viclw17.github.io/2018/07/16/raytracing-ray-sphere-intersection/
// https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection
COORD_T ray_intersect_sphere(sphere_t *s, ray_t *ray, bool skip_dist)
{
// Vector between vector start and center of circle
vector_t oc;
vector_sub(&oc, ray->start, &s->center);
// Solve quadratic function
// TODO Not sure if this step i neccesary because dir is unit
COORD_T a = vector_dot(ray->direction, ray->direction);
COORD_T b = 2 * vector_dot(&oc, ray->direction);
COORD_T c = vector_dot(&oc, &oc) - s->radius * s->radius;
COORD_T d = b * b - 4 * a * c;
// no intersection
if (d < 0) {
return -1;
}
if (skip_dist) {
return 1;
}
// Else take the closest intersection, reuse d
COORD_T q = (b > 0) ?
-0.5 * (b + sqrt(d)) :
-0.5 * (b - sqrt(d));
COORD_T x1 = q / a;
COORD_T x0 = c / q;
// Take the correct result. If one is zero take the other.
if (x0 <= ZERO_APROX) {
if (x1 <= 0) {
return -1;
}
x0 = x1;
}
// If point is on sphere it will be zero close to zero
if (x0 < ZERO_APROX) {
return -1;
}
return x0;
}
// Requires that vectors are normalized
// https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-plane-and-ray-disk-intersection
COORD_T ray_intersect_plane(plane_t *p, ray_t *ray, bool skip_dist)
{
// If zero ray is parralel to plane
COORD_T nr = vector_dot(&p->norm, ray->direction);
// Take care of rounding errors
if (nr < ZERO_APROX && nr > -ZERO_APROX) {
return -1;
}
if (skip_dist) {
return 1;
}
// Calculate distance
vector_t tmp;
vector_copy(&tmp, &p->start);
vector_sub(&tmp, &tmp, ray->start);
COORD_T t = vector_dot(&tmp, &p->norm) / nr;
return t;
}
COORD_T ray_intersect(object_t *o, ray_t *ray, bool skip_dist)
{
switch (o->type) {
case TYPE_PLANE:
return ray_intersect_plane(&o->pl, ray, skip_dist);
case TYPE_SPHERE:
return ray_intersect_sphere(&o->sph, ray, skip_dist);
default:
printf("Unknown object type %d\n", o->type);
return -1;
}
}
// If chk is true, will return at first hit less than chk_dist
object_t *ray_cast(space_t *s, ray_t *r, COORD_T *dist_ret, bool chk, COORD_T chk_dist)
{
object_t *o = s->objects;
object_t *smallest = NULL;
COORD_T dist = 0;
while (o) {
COORD_T d = ray_intersect(o, r, false);
if (d > ZERO_APROX) {
if (chk && ( chk_dist > d || chk_dist == 0)) {
if (dist_ret) {
*dist_ret = d;
}
return o;
}
if (d < dist || smallest == NULL) {
dist = d;
smallest = o;
}
}
o = o->next;
}
if (chk) {
return NULL;
}
if (dist_ret) {
*dist_ret = dist;
}
return smallest;
}
// Color the object o reflects. Given is the point of intersect, vector to the light dir, vector to viewer V, and normal at point N.
static void reflected_at(object_t *o, color_t *dest, color_t *incolor, COORD_T intensity, vector_t *point, vector_t *dir, vector_t *V, vector_t *N) {
// Calculate Deffuse part
color_t tmp;
COORD_T cl = vector_dot(dir, N) * intensity;
if (cl > 0) {
color_scale(&tmp, incolor, cl * o->m->defuse);
color_add(dest, &tmp, dest);
}
// calculate specular part. TODO implement blinn-phong
// Calculate R_m
vector_t R;
vector_scale(&R, N, 2 * vector_dot(dir, N));
vector_sub(&R, &R, dir);
// Add it to the light
cl = vector_dot(&R, V) * intensity;
if (cl > 0) {
cl = pow(cl, o->m->shine);
color_scale(&tmp, incolor, cl * o->m->specular);
color_add(dest, &tmp, dest);
}
}
// Calculate the contribution of light on o. V is vector to viewer and N is normal at point
static void contribution_from_pointlight(space_t *s, color_t *dest, object_t *o, light_t *light, vector_t *point, vector_t *V, vector_t *N)
{
vector_t l;
// Prepare ray
ray_t r;
r.start = point;
// Calculate distance to light
vector_sub(&l, &light->point.pos, point);
COORD_T d = vector_len(&l);
// Normalice
vector_norm(&l);
// Find obstacles
r.direction = &l;
object_t *obs = ray_cast(s, &r, NULL, true, d);
if (obs) {
return;
}
// Calculate the reflected light
COORD_T i = light->radiance / ( d * d);
reflected_at(o, dest, &light->color, i, point, &l, V, N);
}
// Many of these can maybe be put in a context struct
static void contribution_from_arealight(space_t *s, color_t *dest, object_t *o, light_t *light, vector_t *point, vector_t *V, vector_t *N, void *seed)
{
// This only works with spheres
assert(light->area->type == TYPE_SPHERE);
// Color to collect temporary results in
color_t c;
color_set(&c, 0, 0, 0);
ray_t ray;
ray.start = point;
// Calculate vector from light to point
vector_t l;
vector_sub(&l, point, &light->area->sph.center);
vector_norm(&l);
// Initialize the transformation stuff
csystem_t cs;
csystem_init(&cs, &l);
// Do the same monte carlo as with environment but the starting point is the center of the circle.
// And the result is a point on the circle
for (int i = 0; i < s->gfx->arealight_samples; i++) {
// Do the monte carlo random distribution thing from the article
COORD_T r1 = ray_rand(seed);
// Random direction on halv sphere pointing towards point
vector_t randpoint;
csystem_hemisphere_random(&cs, r1, ray_rand(seed), &randpoint);
csystem_calc_real(&cs, &randpoint, &randpoint);
// Shift it up to center of circle
vector_add(&randpoint, &randpoint, &light->area->sph.center);
// Cast a ray towards it, reuse randpoint as direction
vector_sub(&randpoint, &randpoint, point);
COORD_T dist = vector_len(&randpoint);
vector_t dir;
vector_scale_inv(&dir, &randpoint, dist);
ray.direction = &dir;
object_t *obs = ray_cast(s, &ray, NULL, true, dist - ZERO_APROX);
if (obs) {
// We hit something skip it.
continue;
}
// Add the light contribution
COORD_T i = light->radiance / ( dist * dist);
reflected_at(o, &c, &light->color, i, point, &randpoint, V, N);
}
// Device by pdf
color_scale(&c, &c, ((COORD_T) 1 / s->gfx->arealight_samples) * (2 * PI));
color_add(dest, dest, &c);
}
static void direct_light(space_t *s, color_t *dest, object_t *o, vector_t *N, vector_t *eye, vector_t *point, void *seed)
{
// And vector towards viewer
vector_t V;
vector_sub(&V, eye, point);
// Normalice it
vector_norm(&V);
// Loop lights
light_t *light = s->lights;
while (light) {
// Calculate contribution depending on the light type
switch (light->type) {
case TYPE_L_POINT:
contribution_from_pointlight(s, dest, o, light, point, &V, N);
break;
case TYPE_L_AREA:
contribution_from_arealight(s, dest, o, light, point, &V, N, seed);
break;
}
light = light->next;
}
}
// Calculates the global illumination. Pretty slow
// https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing/global-illumination-path-tracing-practical-implementation
static void env_light(space_t *s, color_t *dest, object_t *o, vector_t *N, vector_t *point, void *seed)
{
if (s->gfx->envlight_samples == 0) {
return;
}
csystem_t cs;
csystem_init(&cs, N);
// Prepare ray
ray_t r;
r.start = point;
// Tmp color for accumilating colors
color_t acc;
color_set(&acc, 0, 0, 0);
for (unsigned i = 0; i < s->gfx->envlight_samples; i++) {
COORD_T r1 = ray_rand(seed);
// Calculate the random direction vector
vector_t randdir;
csystem_hemisphere_random(&cs, r1, ray_rand(seed), &randdir);
// Convert to world cordinates using the calculated N vectors.
csystem_calc_real(&cs, &randdir, &randdir);
// Check the direction for obstacles
r.direction = &randdir;
object_t *obs = ray_cast(s, &r, NULL, true, 0);
if (obs) {
// If we hit something don't add the light
continue;
}
// Add the light together after scaling it
color_t tmp;
color_scale(&tmp, &s->env_color, r1);
color_add(&acc, &acc, &tmp);
}
// Devide by number of samples and pdf
color_scale(&acc, &acc, ((COORD_T) 1/ s->gfx->envlight_samples) * (2 * PI));
// Add to dest
color_add(dest, dest, &acc);
}
// https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing/global-illumination-path-tracing-practical-implementation
static void global_light(space_t *s, color_t *dest, object_t *o, vector_t *N, vector_t *point, unsigned hop, void *seed)
{
if (s->gfx->globallight_samples == 0) {
return;
}
// Init hemisphere translation
csystem_t cs;
csystem_init(&cs, N);
// Prepare ray
ray_t r;
r.start = point;
// Value for accumilating colors
color_t acc;
color_set(&acc, 0, 0, 0);
// Samples is lowered for every hop
unsigned samples;
if (hop < s->gfx->gl_opt_depth) {
samples = s->gfx->globallight_samples / (hop + 1);
} else {
samples = s->gfx->globallight_samples / (s->gfx->gl_opt_depth + 1);
}
for (unsigned i = 0; i < samples; i++) {
COORD_T r1 = ray_rand(seed);
// Calculate the random direction vector
vector_t randdir;
csystem_hemisphere_random(&cs, r1, ray_rand(seed), &randdir);
// Convert to world cordinates using the calculated N vectors.
csystem_calc_real(&cs, &randdir, &randdir);
// Check the direction for obstacles
r.direction = &randdir;
COORD_T cl = vector_dot(&randdir, N);
// Only recurse if neccesary
if (cl > 0.01) {
// Cast ray in direction if we have more hops
color_t tmp;
color_set(&tmp, 0, 0, 0);
if (hop < s->gfx->depth) {
ray_trace_recur(s, &tmp, &r, hop+1, r1, seed);
}
// Calculate Deffuse light
color_scale(&tmp, &tmp, cl * o->m->defuse);
color_add(&acc, &tmp, &acc);
}
}
// Devide by number of samples and pdf
color_scale(&acc, &acc, ((COORD_T) 1/ samples) * (2 * PI));
// Add to dest
color_add(dest, dest, &acc);
}
int ray_trace_recur(space_t *s, color_t *dest, ray_t *ray, unsigned hop, COORD_T scale, void *seed)
{
COORD_T dist;
object_t *o = ray_cast(s, ray, &dist, false, 0);
if (!o) {
return 1;
}
color_t c;
color_set(&c, 0, 0, 0);
vector_t rdir, rstart;
ray_t r = {.start = &rstart, .direction = &rdir};
vector_scale(r.start, ray->direction, dist);
vector_add(r.start, r.start, ray->start);
// Calculate normal vector
vector_t N;
obj_norm_at(o, &N, r.start, ray->direction);
// Check if emissive
if (o->m->emissive > ZERO_APROX) {
color_set(&c, o->m->emissive, o->m->emissive, o->m->emissive);
goto exit;
}
// Check if we should calculate light
if (o->m->defuse + o->m->specular > ZERO_APROX) {
// Add all light hitting o at r.start to c
direct_light(s, &c, o, &N, ray->start, r.start, seed);
global_light(s, &c, o, &N, r.start, hop, seed);
}
// Calculate environmental light
if (s->env_enabled) {
env_light(s, &c, o, &N, r.start, seed);
}
// Calculate reflection vector
if (hop < 10 && o->m->reflective > ZERO_APROX) {
vector_scale(r.direction, &N, 2 * vector_dot(ray->direction, &N));
vector_sub(r.direction, ray->direction, r.direction);
ray_trace_recur(s, &c, &r, hop+1, o->m->reflective, seed);
}
// Scale by the objects own color.
color_scale_vector(&c, &c, &o->m->color);
exit:
// Add it to the result
color_scale(&c, &c, scale);
color_add(dest, dest, &c);
return 0;
}
int path_trace_recur(space_t *s, color_t *dest, ray_t *ray, unsigned hop, COORD_T scale, void *seed)
{
COORD_T dist;
object_t *o = ray_cast(s, ray, &dist, false, 0);
if (!o) {
return 1;
}
color_t c;
color_set(&c, 0, 0, 0);
vector_t rdir, rstart;
ray_t r = {.start = &rstart, .direction = &rdir};
vector_scale(r.start, ray->direction, dist);
vector_add(r.start, r.start, ray->start);
// Calculate normal vector
vector_t N;
obj_norm_at(o, &N, r.start, ray->direction);
// Check if emissive
if (o->m->emissive > ZERO_APROX) {
printf("Emisive\n");
color_set(&c, o->m->emissive, o->m->emissive, o->m->emissive);
goto exit;
}
if (o->m->reflective > ZERO_APROX) {
printf("reflective\n");
vector_scale(r.direction, &N, 2 * vector_dot(ray->direction, &N));
vector_sub(r.direction, ray->direction, r.direction);
path_trace_recur(s, &c, &r, hop+1, o->m->reflective, seed);
goto exit;
}
printf("random\n");
// Init hemisphere translation
csystem_t cs;
csystem_init(&cs, &N);
COORD_T r1 = ray_rand(seed);
// Calculate the random direction vector
vector_t randdir;
csystem_hemisphere_random(&cs, r1, ray_rand(seed), &randdir);
// Convert to world cordinates using the calculated N vectors.
csystem_calc_real(&cs, &randdir, &randdir);
// Probability of the raydirection
COORD_T p = 1.0/(PI * 2);
// Calculate the defuse reflection
r.direction = &randdir;
COORD_T cl = vector_dot(&randdir, &N) / p;
// Cast ray in direction if we have more hops
if (hop < s->gfx->depth) {
path_trace_recur(s, &c, &r, hop+1, r1, seed);
}
// Scale by own color
color_scale_vector(&c, &c, &o->m->color);
// Calculate Deffuse light
color_scale(&c, &c, cl * o->m->defuse);
exit:
color_scale(&c, &c, scale);
color_add(dest, &c, dest);
return 0;
}
void ray_trace(space_t *s, unsigned int x, unsigned int y, color_t *c, void *seed)
{
// Init return color. Will be accumilated with all the detected light.
color_set(c, 0, 0, 0);
// Setup primary ray
ray_t r;
r.start = &s->view.position;
vector_t dir;
r.direction = vector_set(&dir, 0, 0, 0);
// Multiple samples for antialias
// TODO better distribution of antialias probes
for (unsigned i = 0; i < s->gfx->antialias_samples; i++) {
color_t ctmp;
color_set(&ctmp, 0, 0, 0);
// Calculate random direction
COORD_T r1 = ray_rand(seed);
COORD_T r2 = ray_rand(seed);
viewpoint_ray(&s->view, r.direction, x + r1, y + r2);
// Run the recursive ray trace
if (path_trace_recur(s, &ctmp, &r, 0, 1, seed)) {
printf("Hit nothing");
// Hit nothing add back
color_add(&ctmp, &ctmp, &s->back);
}
// Color_add will not go above 1. In this case we don't want that.
c->r += ctmp.r; c->g += ctmp.g; c->b += ctmp.b;
printf("i: %d ", i);
vector_print(c);
}
// Take the median
if (s->gfx->antialias_samples > 1) {
// Same as deviding by samples
color_scale(c, c, 1.0/ (COORD_T) s->gfx->antialias_samples);
}
// Add ambient
color_add(c, c, &s->ambient);
}
|