aboutsummaryrefslogtreecommitdiff
path: root/sem7/pp/lec2.scm
diff options
context:
space:
mode:
Diffstat (limited to 'sem7/pp/lec2.scm')
-rw-r--r--sem7/pp/lec2.scm99
1 files changed, 99 insertions, 0 deletions
diff --git a/sem7/pp/lec2.scm b/sem7/pp/lec2.scm
new file mode 100644
index 0000000..72d6904
--- /dev/null
+++ b/sem7/pp/lec2.scm
@@ -0,0 +1,99 @@
+;; This is not meant do be, please do not use define-syntax too much.
+;; Just leaving this here to remember how it works.
+(define-syntax lambda-curry
+ (syntax-rules ()
+ [(_ (x) b1 b2 ...)
+ (lambda (x) b1 b2 ...)]
+ [(_ (x r ...) b1 b2 ...)
+ (lambda (x)
+ (lambda-curry (r ...) b1 b2 ...)
+ )]
+ ))
+
+(define-syntax call-curry
+ (syntax-rules ()
+ [(_ f x)
+ (f x)]
+ [(_ f x r ...)
+ (call-curry (f x) r ...)]
+ ))
+
+;;# Exercise 2.21
+;;? Create a differentiation function
+;;? For the delta use a very small number ;-)
+(define (diff f)
+ (lambda (x)
+ (let [(delta 0.00001)]
+ (/ (- (f (+ delta x)) (f x)) delta))
+ ))
+
+;; Lets get a text function
+(define (f x) (* x x))
+(define (fd x) (* 2 x))
+
+;;? Create compare-2-function which takes two functions and and array of numbers
+(define (compare-2-funcs f1 f2 numbers)
+ (map (lambda (num)
+ (- (f2 num) (f1 num)))
+ numbers))
+
+;; Yeah not tail recursive, but its fine
+(define (linspace start stop step)
+ (if (> start stop)
+ '()
+ (cons start (linspace (+ start step) stop step))
+ ))
+
+(define (accumulate f nul)
+ (letrec [(self (lambda (lst)
+ (if (null? lst)
+ nul
+ (f (car lst) (self (cdr lst)))
+ ))
+ )] self))
+
+(define sum (accumulate + 0))
+
+;;# Exercise 2.11
+;;? Create a generator function for (cmp x y) which takes a lt (less than) function.
+;;? (cmp x y) returns -1 if x < y, 0 when x = y and 1 when x > y.
+(define (make-cmp lt)
+ (lambda (x y)
+ (cond [(lt x y) -1]
+ [(lt y x) 1]
+ [else 0])
+ ))
+
+(define (from-cmp cmp)
+ (let* ([lt (lambda (x y) (= -1 (cmp x y)))]
+ [gt (lambda (x y) (= 1 (cmp x y)))]
+ [eq (lambda (x y) (= 0 (cmp x y)))]
+ ) (values lt gt eq)))
+
+;;# Exercise 2.2
+(define (replication-to list len)
+ (letrec ([recur (lambda (part len res)
+ (cond [(zero? len) res]
+ [(null? part) (recur list len res)]
+ [else (recur (cdr part) (1- len) (cons (car part) res))]
+ ))]
+ ) (reverse (recur list len '()))))
+
+;;# Exercise 2.16
+(define (for-all-1 lst p)
+ ((accumulate (lambda (x y) (and y (p x))) #t) lst))
+
+(define (there-exists lst p)
+ ((accumulate (lambda (x y) (or y (p x))) #f) lst))
+
+;; Wow im a bit stupid, but this is much easier with a filter function
+;; The above one's too
+;; I dont want to implement it right now
+(define (there-exists-1 lst p)
+ (car ((accumulate (lambda (x state) (let ([good (p x)])
+ (cons (cond [(not (cdr state)) good]
+ [good #f]
+ [else #t])
+ (or good (cdr state))
+ ))) (cons #f #f)) lst)))
+