diff options
Diffstat (limited to 'sem6/prob/m2/noter.tex')
-rw-r--r-- | sem6/prob/m2/noter.tex | 98 |
1 files changed, 98 insertions, 0 deletions
diff --git a/sem6/prob/m2/noter.tex b/sem6/prob/m2/noter.tex new file mode 100644 index 0000000..3eb2e4f --- /dev/null +++ b/sem6/prob/m2/noter.tex @@ -0,0 +1,98 @@ +\title{Noter til probability m2} + +\section{Random Variables} +Her mapper man fra et sample space S til en variabel. +Her kalder man variablen et stort tal R eller sådan noget. + +Derfor er et random variabel egentlig en transformation mellem S og real tal. + +\emph{X er en descrete random variable hvis dens range er countable.} + +For continues random variables the following is true: + +$$ +P(X = x) = 0 +$$ + + +\subsection{Cumulative Distribution Function} + +Her måler man prob for at ens random er mindre end et bestemt tal. + +$$ +F(x) = P(X \leq x) +$$ + +Man kan også finde det for en range: + +$$ +P(a < X \leq b) = F(b) - F(a) +$$ + +Ved discrete random variables vil denne være en slags trappe. + +Kan sige at den er \emph{continues from the right} eftersom man har $\leq$ i definition. + +\subsection{Probability Mass Function} + +Works only for discrete random variables. +Is defines as the probability that $X = a$: + +$$ +p(a) = P(X = a) +$$ + +From here CDF can be found: + +$$ +F(a) = \sum_{all x \leq a} p(a) +$$ + + +\subsection{Probability Density Function} + +Her finder man P i et evigt lille interval: +Is the derivative of the CDF. + +$$ +F(a) = P(X \in (-\infty,a]) = \int_{-\infty}^a f(x) dx \\ +f(a) = \frac{d}{da} F(a) +$$ + +The following must be true: + +$$ +\int_{-\infty}^{\infty} f(x) dx = 1 +$$ + +\subsection{Multiple Random Variables} + +Have multiple random variables, which can be or is not correlated. +Can define the joined CDF: + +$$ +F_{XY}(x,y) = P(X \leq x, Y \leq y) +$$ + +One can also find the probability of one of the variables. (The \emph{marginal}) + +$$ +F_X(x) = P(X \leq x) = P(X \leq, Y < \infty) = F(x, \infty) +$$ + +One can not go from marginal to the joined, as they do not contain enough information. +This is only possible if X and Y are \emph{independent}. + +$$ +F_{XY}(x,y) = F_X(x) \cdot F_Y(x) \\ +p(x,y) = p_X(x) \cdot p_Y(y) \\ +f(x,y) = f_X(x) \cdot f_Y(y) +$$ + +\subsection{Joined PMF} + +$$ +P_{XY}(x,y) = P(X = x, Y = y) +$$ + +% vim: spell spelllang=da,en |