diff options
Diffstat (limited to 'sem3/algo/mm3')
-rw-r--r-- | sem3/algo/mm3/multiply.c | 56 | ||||
-rw-r--r-- | sem3/algo/mm3/opgaver.md | 49 |
2 files changed, 105 insertions, 0 deletions
diff --git a/sem3/algo/mm3/multiply.c b/sem3/algo/mm3/multiply.c new file mode 100644 index 0000000..e454de3 --- /dev/null +++ b/sem3/algo/mm3/multiply.c @@ -0,0 +1,56 @@ +#include <stdio.h> +#include <stdlib.h> +#include <stdint.h> +#include <time.h> + +uint64_t mult(uint64_t x, uint64_t y, unsigned int bits) { + /* Check if they expect more than 64 bits. */ + if( bits > 64 ) { + printf("Sorry we cant handle higher than 64 bits\n"); + exit(1); + } else if(bits <= 1) { + return x && y; + } + + unsigned int newBits = bits >> 1; + +#if DO_PRINT == 1 + printf("\n\n bits: %u, New bits: %u\n", bits, newBits); +#endif + + /* Split up into to */ + uint32_t halvMask = ((uint64_t)1 << newBits) - 1; +#if DO_PRINT == 1 + printf("Using mask 0x%08X\n", halvMask); +#endif + uint32_t a = (x >> (newBits)) & halvMask; + uint32_t b = x & halvMask; + uint32_t c = (y >> (newBits)) & halvMask; + uint32_t d = y & halvMask; + +#if DO_PRINT == 1 + printf("A: 0x%08X, B: 0x%08X, C: 0x%08X, D: 0x%08X\n", a, b, c, d); +#endif + + return (mult(a, c, newBits) << bits) + ((mult(a, d, newBits) + mult(b, c, newBits)) << newBits) + mult(b, d, newBits); + +} + + +int main(void) { + + uint32_t a = 0xFFFFFF; + uint8_t b = 55; + uint64_t res; + + clock_t begin = clock(); + res = mult(a, b, 64); + clock_t end = clock(); + + printf("Result: %lld\n", res); + + clock_t diff = end - begin; + printf("Took %d which is %f s\n", diff, (double)diff/CLOCKS_PER_SEC); + + return 0; +} diff --git a/sem3/algo/mm3/opgaver.md b/sem3/algo/mm3/opgaver.md new file mode 100644 index 0000000..a6e560c --- /dev/null +++ b/sem3/algo/mm3/opgaver.md @@ -0,0 +1,49 @@ +# Opgave 1 + +## Exercise 9.2 + +**T(n) = 3T(n/2) + n** + +a = 3 +b = 2 +d(n) = n + +a ? d(b) -> 3 > 2 + +Svaret er derfor O(n^log2(3)) = O(n^1.59) + +**T(n) = 3T(n/2) + n^2** + +3 ? 2^2 -> 3 < 4 + +d(n) = n^2 hvilket betyder at O(n^2) + +**T(n) = 8T(n/2) + n^2** + +8 ? 2^3 -> 8 = 8 + +d(n) = n^3 hvilket betyder at O(n^3 log2(n)) + +## Evercise 9.3 + +**T(n) = 4T(n/3) + n** + +a = 4 +b = 3 +d(n) = n + +4 ? 3 -> 4 > 3 + +Derfor er svaret O(n^log3(4)) = O(n^1.26) + +**T(n) = 4T(n/3) + n^2** + +4 ? 3^2 -> 4 < 9 + +d(n) = n^2 hvilket betyder at O(n^2) + +**T(n) = 9T(n/3) + n^2** + +9 ? 3^2 -> 9 = 9 + +d(n) = n^2 hvilket betyder at O(n^2 log2(n)) |