aboutsummaryrefslogtreecommitdiff
path: root/sem6/com/m3
diff options
context:
space:
mode:
authorJulian T <julian@jtle.dk>2021-05-31 11:30:40 +0200
committerJulian T <julian@jtle.dk>2021-05-31 11:30:40 +0200
commit211d0ff6835017ba4c237fa909837ca84e1e095b (patch)
tree34f954216854e835e32cd77978dc49990122631c /sem6/com/m3
parent392e56bcebdbc391e1c63bdaebc2f9e89270f1f8 (diff)
Add many more solutions and notes
Diffstat (limited to 'sem6/com/m3')
-rw-r--r--sem6/com/m3/channel_test.py90
1 files changed, 0 insertions, 90 deletions
diff --git a/sem6/com/m3/channel_test.py b/sem6/com/m3/channel_test.py
deleted file mode 100644
index c8f9e85..0000000
--- a/sem6/com/m3/channel_test.py
+++ /dev/null
@@ -1,90 +0,0 @@
-import numpy as np
-
-class MatrixEncoder:
- def ident(dim, value=1):
- return np.identity(dim) * value
-
-class Vector:
- def __init__(self, arr):
- self.arr = arr
- self.len = len(arr)
-
- def add(self, other):
- return self.__class__(self.arr + other.arr)
-
- def __str__(self):
- return str(self.arr)
-
- def print(self, f="{}"):
- print(f.format(self))
- return self
-
- def gaussian(size, mu, sigma):
- return Vector(sigma * np.random.randn(size) + mu)
-
-
-class BitVector(Vector):
- def gen_uniform(size):
- arr = np.random.randint(0, 2, size)
- return BitVector(arr)
-
- def to_int(self):
- reverse = np.flip(self.arr)
-
- res = 0
- for (i, b) in enumerate(reverse):
- res += b * 2**i
- return res
-
- def encode(self, matrix):
- return SymbolVector(matrix[self.to_int()])
-
- def from_int(index, size=None):
- bits = []
- while index > 0:
- remainder = index % 2
- index = index // 2
- bits.insert(0, remainder)
-
- # Padding if they want
- if size is not None:
- missing = max(0, size - len(bits))
- bits = [0] * missing + bits
-
- return BitVector(bits)
-
- def check_if_error(self, other):
- return np.array_equal(self.arr, other.arr)
-
-class SymbolVector(Vector):
- def with_noise(self, c):
- noise = Vector.gaussian(self.len, 0, c)
- return self.add(noise)
-
- def decide_and_decode(self, matrix):
- dim = len(matrix)
- # Collect all distances in vector
- dists = np.arange(dim)
- for (i, vec) in enumerate(matrix):
- dists[i] = np.dot(self.arr, vec)
-
- # Find index with smallest
- index = np.argmax(dists)
-
- # Convert integer back to bit vector
- return BitVector.from_int(index, size=int(np.log2(dim)))
-
-encoder = MatrixEncoder.ident(4, np.sqrt(1))
-
-faults = 0
-total = 10000
-for i in range(total):
- original = BitVector.gen_uniform(2)
- after = original.encode(encoder) \
- .with_noise(1) \
- .decide_and_decode(encoder)
- if original.check_if_error(after):
- faults += 1
-
-print(f"Fault percentage {(faults / total) * 100}%")
-