diff options
author | Julian T <julian@jtle.dk> | 2020-02-11 11:48:53 +0100 |
---|---|---|
committer | Julian T <julian@jtle.dk> | 2020-02-11 11:48:53 +0100 |
commit | 57305119e05559c1c37e903aef89cd43f44c42c9 (patch) | |
tree | 5df95141e99550c22710a94629dca09d7185851a /sem4/hpp | |
parent | bf40ddf3a1970b857adeb070a1b4d0dbc8f3c1b6 (diff) |
Added embedded assignment and python assignments
Diffstat (limited to 'sem4/hpp')
-rw-r--r-- | sem4/hpp/pythonAB/opg_a_b.ipynb | 347 |
1 files changed, 347 insertions, 0 deletions
diff --git a/sem4/hpp/pythonAB/opg_a_b.ipynb b/sem4/hpp/pythonAB/opg_a_b.ipynb new file mode 100644 index 0000000..7214643 --- /dev/null +++ b/sem4/hpp/pythonAB/opg_a_b.ipynb @@ -0,0 +1,347 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Opgaver til python A og B kursus" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Opgave 1\n", + "\n", + "Make a function that can appproximate an integral using mid point integration:\n", + "\n", + "$$ \\int_a^b f(x) dx \\approx h \\cdot \\sum_{i=0}^{n-1} f(a + 1/2 h + ih)$$\n", + "\n", + "1. Make a Python function midpointint(f, a, b, n): that performs the mid point integration where f is a scalar function that can be evaluated as f(x).\n", + "2. Compute closed form solutions of $\\int_a^b f(x) dx$ for your favorite $f$ e.g. exp, sin, cos\n", + "3. Validate you implementation with the closed form solution" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def midpointint(f, a, b, n): \n", + " \"\"\" \n", + " Approximates int(a to b) f(x) dx using midpoint integration. \n", + " \"\"\" \n", + " h = (b-a)/n \n", + " \n", + " # Create a generator and sum it \n", + " gen = (f(a + 1/2 * h + i * h) for i in range(0, n-1)) \n", + " \n", + " return h * sum(gen)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I like $f(x) = e^x$ so that is what we will do. With $a = 0, b = 10$.\n", + "\n", + "$$\\int_0^{10} e^x dx = e^{10} -1 \\approx 22025$$" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "21806.207938916818" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import math\n", + "f = lambda x: math.exp(x)\n", + "midpointint(f, 0, 10, 1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Trying a $f(x) = sin(x)$ with in same interval.\n", + "\n", + "$$\\int_0^{10} sin(x) dx \\approx 1.8391$$" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.8444773816015885" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f = lambda x: math.sin(x)\n", + "midpointint(f, 0, 10, 1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Opgave 3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make a Python script, which defines and prints the following integer arrays:\n", + "\n", + "$$ D_1 = \\left[\\begin{matrix}\n", + " 1 & 0 & 1 \\\\\n", + " 0 & 2 & 0 \\\\\n", + " 1 & 0 & 1\n", + "\\end{matrix}\\right]$$\n", + "\n", + "$$ D_2 = \\left[\\begin{matrix}\n", + " 1 & 8 & 1 \\\\\n", + " 8 & 2 & 8 \\\\\n", + " 1 & 8 & 1\n", + "\\end{matrix}\\right]$$\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[1, 8, 1], [8, 2, 8], [1, 8, 1]]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "D1 = [\n", + " [1, 0, 1],\n", + " [0, 2, 0],\n", + " [1, 0, 1]\n", + "]\n", + "D2 = [\n", + " [1, 8, 1],\n", + " [8, 2, 8],\n", + " [1, 8, 1]\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the script further compute the following:\n", + "\n", + "1. Make a list of tuples containing indices to matrix elements $(D_2)_{i,j}$ where $(D_2)_{i,j} > 1$. Print the list and validate that it is correct." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# This can be done using list comprehention\n", + "[(i, j) for (i, r) in enumerate(D2) for (j, c) in enumerate(r) if c > 1]" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Or generators\n", + "def gen():\n", + " for (i, r) in enumerate(D2):\n", + " for (j, c) in enumerate(r):\n", + " if c > 1:\n", + " yield (i, j)\n", + " \n", + "list(gen())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. Make a new matrix as:\n", + "$$ F = \\left[\\begin{matrix}\n", + "D_2 & D_2 \\\\\n", + "D_2 & D_2\n", + "\\end{matrix}\\right]$$\n", + "Print **F** and the shape of **F** as a tuple.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(6, 6)\n" + ] + }, + { + "data": { + "text/plain": [ + "[[1, 8, 1, 1, 8, 1],\n", + " [8, 2, 8, 8, 2, 8],\n", + " [1, 8, 1, 1, 8, 1],\n", + " [1, 8, 1, 1, 8, 1],\n", + " [8, 2, 8, 8, 2, 8],\n", + " [1, 8, 1, 1, 8, 1]]" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Multiplying list concatinates it with itself.\n", + "\n", + "F = [2*r for r in D2] * 2\n", + "\n", + "# outer inner\n", + "print((len(F), len(F[0])))\n", + "F" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. Compute and print the sum of all elements of the **F** matrix." + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "152" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum((c for r in F for c in r))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. Use Python to determine and print the number of ‘1’, ‘2’ and ‘8’ values in **F**." + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1: 16, 2: 4, 8: 16\n" + ] + } + ], + "source": [ + "# Not very efficient because we loop multiple times.\n", + "count = lambda n: sum((1 for r in F for c in r if c == n))\n", + "\n", + "print(f\"1: {count(1)}, 2: {count(2)}, 8: {count(8)}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} |