aboutsummaryrefslogtreecommitdiff
path: root/sem4/hpp
diff options
context:
space:
mode:
authorJulian T <julian@jtle.dk>2020-02-11 11:48:53 +0100
committerJulian T <julian@jtle.dk>2020-02-11 11:48:53 +0100
commit57305119e05559c1c37e903aef89cd43f44c42c9 (patch)
tree5df95141e99550c22710a94629dca09d7185851a /sem4/hpp
parentbf40ddf3a1970b857adeb070a1b4d0dbc8f3c1b6 (diff)
Added embedded assignment and python assignments
Diffstat (limited to 'sem4/hpp')
-rw-r--r--sem4/hpp/pythonAB/opg_a_b.ipynb347
1 files changed, 347 insertions, 0 deletions
diff --git a/sem4/hpp/pythonAB/opg_a_b.ipynb b/sem4/hpp/pythonAB/opg_a_b.ipynb
new file mode 100644
index 0000000..7214643
--- /dev/null
+++ b/sem4/hpp/pythonAB/opg_a_b.ipynb
@@ -0,0 +1,347 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Opgaver til python A og B kursus"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Opgave 1\n",
+ "\n",
+ "Make a function that can appproximate an integral using mid point integration:\n",
+ "\n",
+ "$$ \\int_a^b f(x) dx \\approx h \\cdot \\sum_{i=0}^{n-1} f(a + 1/2 h + ih)$$\n",
+ "\n",
+ "1. Make a Python function midpointint(f, a, b, n): that performs the mid point integration where f is a scalar function that can be evaluated as f(x).\n",
+ "2. Compute closed form solutions of $\\int_a^b f(x) dx$ for your favorite $f$ e.g. exp, sin, cos\n",
+ "3. Validate you implementation with the closed form solution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def midpointint(f, a, b, n): \n",
+ " \"\"\" \n",
+ " Approximates int(a to b) f(x) dx using midpoint integration. \n",
+ " \"\"\" \n",
+ " h = (b-a)/n \n",
+ " \n",
+ " # Create a generator and sum it \n",
+ " gen = (f(a + 1/2 * h + i * h) for i in range(0, n-1)) \n",
+ " \n",
+ " return h * sum(gen)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "I like $f(x) = e^x$ so that is what we will do. With $a = 0, b = 10$.\n",
+ "\n",
+ "$$\\int_0^{10} e^x dx = e^{10} -1 \\approx 22025$$"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "21806.207938916818"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import math\n",
+ "f = lambda x: math.exp(x)\n",
+ "midpointint(f, 0, 10, 1000)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Trying a $f(x) = sin(x)$ with in same interval.\n",
+ "\n",
+ "$$\\int_0^{10} sin(x) dx \\approx 1.8391$$"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1.8444773816015885"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "f = lambda x: math.sin(x)\n",
+ "midpointint(f, 0, 10, 1000)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Opgave 3"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Make a Python script, which defines and prints the following integer arrays:\n",
+ "\n",
+ "$$ D_1 = \\left[\\begin{matrix}\n",
+ " 1 & 0 & 1 \\\\\n",
+ " 0 & 2 & 0 \\\\\n",
+ " 1 & 0 & 1\n",
+ "\\end{matrix}\\right]$$\n",
+ "\n",
+ "$$ D_2 = \\left[\\begin{matrix}\n",
+ " 1 & 8 & 1 \\\\\n",
+ " 8 & 2 & 8 \\\\\n",
+ " 1 & 8 & 1\n",
+ "\\end{matrix}\\right]$$\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[[1, 8, 1], [8, 2, 8], [1, 8, 1]]"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "D1 = [\n",
+ " [1, 0, 1],\n",
+ " [0, 2, 0],\n",
+ " [1, 0, 1]\n",
+ "]\n",
+ "D2 = [\n",
+ " [1, 8, 1],\n",
+ " [8, 2, 8],\n",
+ " [1, 8, 1]\n",
+ "]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In the script further compute the following:\n",
+ "\n",
+ "1. Make a list of tuples containing indices to matrix elements $(D_2)_{i,j}$ where $(D_2)_{i,j} > 1$. Print the list and validate that it is correct."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)]"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# This can be done using list comprehention\n",
+ "[(i, j) for (i, r) in enumerate(D2) for (j, c) in enumerate(r) if c > 1]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)]"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Or generators\n",
+ "def gen():\n",
+ " for (i, r) in enumerate(D2):\n",
+ " for (j, c) in enumerate(r):\n",
+ " if c > 1:\n",
+ " yield (i, j)\n",
+ " \n",
+ "list(gen())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "2. Make a new matrix as:\n",
+ "$$ F = \\left[\\begin{matrix}\n",
+ "D_2 & D_2 \\\\\n",
+ "D_2 & D_2\n",
+ "\\end{matrix}\\right]$$\n",
+ "Print **F** and the shape of **F** as a tuple.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(6, 6)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[[1, 8, 1, 1, 8, 1],\n",
+ " [8, 2, 8, 8, 2, 8],\n",
+ " [1, 8, 1, 1, 8, 1],\n",
+ " [1, 8, 1, 1, 8, 1],\n",
+ " [8, 2, 8, 8, 2, 8],\n",
+ " [1, 8, 1, 1, 8, 1]]"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Multiplying list concatinates it with itself.\n",
+ "\n",
+ "F = [2*r for r in D2] * 2\n",
+ "\n",
+ "# outer inner\n",
+ "print((len(F), len(F[0])))\n",
+ "F"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "3. Compute and print the sum of all elements of the **F** matrix."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "152"
+ ]
+ },
+ "execution_count": 59,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sum((c for r in F for c in r))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "4. Use Python to determine and print the number of ‘1’, ‘2’ and ‘8’ values in **F**."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1: 16, 2: 4, 8: 16\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Not very efficient because we loop multiple times.\n",
+ "count = lambda n: sum((1 for r in F for c in r if c == n))\n",
+ "\n",
+ "print(f\"1: {count(1)}, 2: {count(2)}, 8: {count(8)}\")"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}