aboutsummaryrefslogtreecommitdiff
path: root/sem4/hpp/miniproject
diff options
context:
space:
mode:
authorJulian T <julian@jtle.dk>2020-04-01 17:56:56 +0200
committerJulian T <julian@jtle.dk>2020-04-01 17:56:56 +0200
commita2e57f7df5aed74991002b4940c7f1152d83235b (patch)
tree843081fa369f9c47f4ae98fe7c35a56e52d658b0 /sem4/hpp/miniproject
parenta76d25f222615a7a211f737d32c0b6d79992a8a2 (diff)
Added first to working mangelbrot implementations for hpp
Diffstat (limited to 'sem4/hpp/miniproject')
-rw-r--r--sem4/hpp/miniproject/naive.py70
-rw-r--r--sem4/hpp/miniproject/optimised.py60
2 files changed, 130 insertions, 0 deletions
diff --git a/sem4/hpp/miniproject/naive.py b/sem4/hpp/miniproject/naive.py
new file mode 100644
index 0000000..765878a
--- /dev/null
+++ b/sem4/hpp/miniproject/naive.py
@@ -0,0 +1,70 @@
+#!/usr/bin/env python3
+import numpy as np
+import matplotlib.pyplot as plt
+import time
+
+# c-mesh limits
+limitre = ( -2, 1 )
+limitim = ( -1.5, 1.5 )
+
+def lota(c, T, l):
+ """
+ Implement the ι function used in mangelbrot
+
+ :param c: Complex number from the c-mesh
+ :param T: Mangelbrot threshold
+ :param l: Iterations
+ """
+
+ z = 0
+ for i in range(l):
+ z = z*z + c
+
+ # Check if we found or z
+ if np.abs(z) > T:
+ return i
+
+ # If we did not find z, use l
+ return l
+
+def mangel(pre, pim, T, l):
+ """
+ Calculate the mangelbrot image
+ (pre, pim) discribes the image size. Use T and l to tune the mangelbrot
+ This function uses the global variables limitre and limitim to determine
+ the c-mesh range.
+
+ :param pre: Number of real numbers used
+ :param pim: Number of imaginary numbers
+ :param T: Mangelbrot threshold
+ :param l: Iterations
+ """
+
+ # Preallocate result array
+ rs = np.zeros((pre, pim))
+
+ # Calculate scaling variables
+ sre = ( limitre[1] - limitre[0] ) / (pre-1)
+ sim = ( limitim[1] - limitim[0] ) / (pim-1)
+
+ # Loop all pixels
+ for re in range(pre):
+ for im in range(pim):
+ # Calculate the complex number using the scalers
+ c = limitre[0] + limitim[0] * 1j + sre * re + 1j * sim * im
+
+ # Calculate the ι
+ rs[re,im] = lota(c, T, l) / l
+
+ return rs
+
+
+start = time.time()
+arr = mangel(500, 500, 2, 100)
+end = time.time()
+
+plt.imshow(arr, cmap=plt.cm.hot, vmin=0, vmax=1)
+plt.savefig("test.png")
+plt.savefig("test.pdf")
+
+print(f"Took {end - start} seconds")
diff --git a/sem4/hpp/miniproject/optimised.py b/sem4/hpp/miniproject/optimised.py
new file mode 100644
index 0000000..64af72d
--- /dev/null
+++ b/sem4/hpp/miniproject/optimised.py
@@ -0,0 +1,60 @@
+#!/usr/bin/env python3
+
+import numpy as np
+import matplotlib.pyplot as plt
+import time
+
+# c-mesh limits
+limitre = ( -2, 1 )
+limitim = ( -1.5, 1.5 )
+
+def lota(c, T, l):
+ z = 0
+ for i in range(l):
+ nz = z*z + c
+
+ # Check if we found or z
+ if np.abs(nz) > T:
+ break
+
+ z = nz
+ else:
+ # If we did not find z, use l
+ return l
+
+ return np.abs(z)
+
+def mangel(pre, pim, T, l):
+ # Preallocate result array and z array
+ rs = np.zeros((pre, pim))
+ z = np.zeros((pre, pim))
+
+ # Calculate C matrix
+ re = np.linspace(limitre[0], limitre[1], pre)
+ im = np.linspace(limitim[0], limitim[1], pim)
+
+ # Calculate C by multiplying the scalers in. Remember to move it to the beggining og the c-mesh limit
+ grid = np.add.outer(re, 1j * im)
+
+ for i in range(l):
+ z = z*z + grid
+
+ # Extract all the ones that are under the threshold
+ below = (np.abs(z) < T)
+
+ rs += below
+
+ rs[ rs==rs.max() ] = l
+ rs /= l
+
+ return rs
+
+start = time.time()
+arr = mangel(500, 500, 2, 100)
+end = time.time()
+
+plt.imshow(arr, cmap=plt.cm.hot, vmin=0, vmax=1)
+plt.savefig("test.png")
+plt.savefig("test.pdf")
+
+print(f"Took {end - start} seconds")