//! Implements sphere //! //! Spheres are relatively easy to calculate intersections between use crate::{Float, NEAR_ZERO}; use crate::core::{Ray, Vector3f, Bound3f}; use crate::world::{Hittable, DynHittable, Intersection, Instancable}; pub struct Sphere { radius: Float, } impl Sphere { pub fn new(radius: Float) -> Sphere { Sphere { radius, } } fn norm_at(&self, point: &Vector3f) -> Vector3f { *point / self.radius } } impl Hittable for Sphere { // Implementation from ray tracing in a weekend fn intersect(&self, ray: &Ray) -> Option { let a = ray.direction.len_squared(); let half_b = ray.origin.dot(&ray.direction); let c = ray.origin.len_squared() - self.radius * self.radius; let disc = half_b*half_b - a*c; if disc < 0.0 { None } else { let disc_sqrt = disc.sqrt(); let mut distance = -half_b - disc_sqrt; if distance <= NEAR_ZERO { distance = -half_b + disc_sqrt; } if distance <= NEAR_ZERO { return None; } distance /= a; let w = ray.at(distance); Some(Intersection::new( self.norm_at(&w), w, ray, distance, )) } } /// Box containing the circle /// /// # Examples /// /// ``` /// use rendering::core::Vector3f; /// use rendering::world::{Hittable, shapes::Sphere}; /// /// let sph = Sphere::new(1.0); /// let b = sph.bounding_box(); /// /// assert!(b.min.x == -1.0 && b.min.y == -1.0 && b.min.z == -1.0); /// assert!(b.max.x == 1.0 && b.max.y == 1.0 && b.max.z == 1.0); /// ``` fn bounding_box(&self) -> Bound3f { let offset = Vector3f::new(self.radius); Bound3f::new(-offset, offset) } } impl Instancable for Sphere {} impl Into for Sphere { fn into(self) -> DynHittable { DynHittable::new(Box::new(self)) } } #[cfg(test)] mod tests { use super::*; #[test] fn sphere_intersect() { let sph = Sphere::new(2.0); let ray = Ray { origin: Vector3f::new_xyz(1.0, 0.0, 0.0), direction: Vector3f::new_xyz(0.0, 1.0, 1.5).norm(), }; let dist = sph.intersect(&ray).unwrap(); assert!((dist.t - 1.732).abs() < 0.01); } }