use super::Material; use crate::core::{min, Vector3f, Spectrum, Ray}; use crate::world::Intersection; use crate::sample::Sampler; use crate::Float; pub struct Dielectric { ratio: Float, } fn reflect(v: Vector3f, n: Vector3f) -> Vector3f { v - n * (2.0 * v.dot(&n)) } // Implementation from RTIOW fn refract(v: Vector3f, n: Vector3f, r_ratio: Float, cos_theta: Float) -> Vector3f { let r_perp = (v + n * cos_theta) * r_ratio; let r_parallel = n * (-(1.0 - r_perp.len_squared()).abs().sqrt()); r_perp + r_parallel } // Schlick Approximation, explained in RTIOW fn fresnel(cos: Float, ratio: Float) -> Float { let mut r0 = (1.0-ratio) / (1.0+ratio); r0 = r0 * r0; r0 + (1.0-r0)*(1.0-cos).powi(5) } impl Dielectric { pub fn new(ratio: Float) -> Self { Self { ratio } } } impl Material for Dielectric { // Implementation from RTIOW fn scatter(&self, ray: &Ray, i: &Intersection, sampler: &mut dyn Sampler) -> Option<(Spectrum, Ray)> { let ratio = if i.front {1.0/self.ratio} else {self.ratio}; let ray_dir = ray.direction.norm(); let cos_theta = min((-ray_dir).dot(&i.n), 1.0); let sin_theta = (1.0 - cos_theta*cos_theta).sqrt(); // Test if it is possible for the ray the retract or if it must reflect. let cannot_refract = (ratio * sin_theta) > 1.0; let direction = if cannot_refract || (fresnel(cos_theta, ratio) > sampler.get_sample()) { reflect(ray_dir, i.n) } else { refract(ray_dir, i.n, ratio, cos_theta) }; Some(( Spectrum::WHITE, Ray::new(i.p, direction), )) } }