//! Implements 3d vectors //! //! Also add more 3d math things needed for shading and 3d calculations. use crate::{Float, Number, NEAR_ZERO}; use std::ops::{Mul, Sub, Add, DivAssign, Neg}; use std::fmt; #[derive(Clone, Copy)] pub struct Vector3 { pub x: T, pub y: T, pub z: T, } pub type Vector3f = Vector3; impl Vector3 { pub fn new(initial: T) -> Vector3 { Vector3 { x: initial, y: initial, z: initial, } } pub fn new_xyz(x: T, y: T, z: T) -> Vector3 { Vector3 { x, y, z} } } impl Sub for Vector3 { type Output = Self; fn sub(self, op: Self) -> Self::Output { Self::new_xyz( self.x - op.x, self.y - op.y, self.z - op.z, ) } } impl Add for Vector3 { type Output = Self; fn add(self, op: Self) -> Self::Output { Self::new_xyz( self.x + op.x, self.y + op.y, self.z + op.z, ) } } impl Add for Vector3 { type Output = Self; fn add(self, op: T) -> Self::Output { Self::new_xyz( self.x + op, self.y + op, self.z + op, ) } } impl Mul for Vector3 { type Output = Self; fn mul(self, op: T) -> Self::Output { Self::Output::new_xyz( self.x * op, self.y * op, self.z * op, ) } } impl Neg for Vector3 { type Output = Self; fn neg(self) -> Self::Output { Self::Output::new_xyz( -self.x, -self.y, -self.z, ) } } impl DivAssign for Vector3 { fn div_assign(&mut self, op: T) { self.x /= op; self.y /= op; self.z /= op; } } impl fmt::Display for Vector3 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.write_fmt(format_args!("[{}, {}, {}]", self.x, self.y, self.z)) } } impl Vector3f { /// Calculates the length times itself /// /// This is faster than using len * len as the square is ommited pub fn len_squared(&self) -> Float { self.x * self.x + self.y * self.y + self.z * self.z } pub fn len(&self) -> Float { self.len_squared().sqrt() } pub fn dot(&self, op: &Self) -> Float { self.x * op.x + self.y * op.y + self.z * op.z } /// Inplace normal instead of creating a new vector /// /// # Example /// /// ``` /// use pathtrace::core::Vector3f; /// let mut v = Vector3f::new_xyz(10.0, 0.0, 0.0); /// v.norm_in(); /// assert!(v.x == 1.0); /// ``` pub fn norm_in(&mut self) { // TODO Experiment with checking for normality with len_squared let len = self.len(); if len == 0.0 { *self = Self::new(0.0); } *self /= len; } pub fn norm(&self) -> Self { let mut new = self.clone(); new.norm_in(); new } pub fn cross(&self, op: &Self) -> Self { Self::new_xyz( self.y * op.z - self.z * op.y, self.z * op.x - self.x * op.z, self.x * op.y - self.y * op.x, ) } /// Check if vector is close to [0, 0, 0] /// /// This is based on the NEAR_ZERO constant pub fn near_zero(&self) -> bool { (self.x.abs() < NEAR_ZERO) && (self.y.abs() < NEAR_ZERO) && (self.z.abs() < NEAR_ZERO) } }