1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "vector.h"
#include "ray.h"
#define PI 3.14159265359
// https://en.wikipedia.org/wiki/Line%E2%80%93sphere_intersection
// http://viclw17.github.io/2018/07/16/raytracing-ray-sphere-intersection/
// https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection
COORD_T ray_intersect_sphere(sphere_t *s, ray_t *ray, bool skip_dist)
{
// Vector between vector start and center of circle
vector_t oc;
vector_sub(&oc, ray->start, &s->center);
// Solve quadratic function
// TODO Not sure if this step i neccesary because dir is unit
COORD_T a = vector_dot(ray->direction, ray->direction);
COORD_T b = 2 * vector_dot(&oc, ray->direction);
COORD_T c = vector_dot(&oc, &oc) - s->radius * s->radius;
COORD_T d = b * b - 4 * a * c;
// no intersection
if (d < 0) {
return -1;
}
if (skip_dist) {
return 1;
}
// Else take the closest intersection, reuse d
COORD_T q = (b > 0) ?
-0.5 * (b + sqrt(d)) :
-0.5 * (b - sqrt(d));
COORD_T x1 = q / a;
COORD_T x0 = c / q;
// Take the correct result. If one is zero take the other.
if (x0 <= ZERO_APROX) {
if (x1 <= 0) {
return -1;
}
x0 = x1;
}
// If point is on sphere it will be zero close to zero
if (x0 < ZERO_APROX) {
return -1;
}
return x0;
}
// Requires that vectors are normalized
// https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-plane-and-ray-disk-intersection
COORD_T ray_intersect_plane(plane_t *p, ray_t *ray, bool skip_dist)
{
// If zero ray is parralel to plane
COORD_T nr = vector_dot(&p->norm, ray->direction);
// Take care of rounding errors
if (nr < ZERO_APROX && nr > -ZERO_APROX) {
return -1;
}
if (skip_dist) {
return 1;
}
// Calculate distance
vector_t tmp;
vector_copy(&tmp, &p->start);
vector_sub(&tmp, &tmp, ray->start);
COORD_T t = vector_dot(&tmp, &p->norm) / nr;
return t;
}
COORD_T ray_intersect(object_t *o, ray_t *ray, bool skip_dist)
{
switch (o->type) {
case TYPE_PLANE:
return ray_intersect_plane(&o->pl, ray, skip_dist);
case TYPE_SPHERE:
return ray_intersect_sphere(&o->sph, ray, skip_dist);
default:
printf("Unknown object type %d\n", o->type);
return -1;
}
}
// If chk is true, will return at first hit less than chk_dist
object_t *ray_cast(space_t *s, ray_t *r, COORD_T *dist_ret, bool chk, COORD_T chk_dist)
{
object_t *o = s->objects;
object_t *smallest = NULL;
COORD_T dist = 0;
while (o) {
COORD_T d = ray_intersect(o, r, false);
if (d > ZERO_APROX) {
if (chk && ( chk_dist > d || chk_dist == 0)) {
if (dist_ret) {
*dist_ret = d;
}
return o;
}
if (d < dist || smallest == NULL) {
dist = d;
smallest = o;
}
}
o = o->next;
}
if (chk) {
return NULL;
}
if (dist_ret) {
*dist_ret = dist;
}
return smallest;
}
static void direct_light(space_t *s, color_t *dest, object_t *o, vector_t *N, vector_t *eye, vector_t *point)
{
ray_t r;
r.start = point;
// And vector towards viewer
vector_t V;
vector_sub(&V, eye, point);
// Normalice it
vector_scale_inv(&V, &V, vector_len(&V));
// Cast light rays
light_t *light = s->lights;
while (light) {
vector_t l;
// Calculate distance to light
vector_sub(&l, &light->pos, point);
COORD_T d = vector_len(&l);
// Normalice
vector_scale_inv(&l, &l, vector_len(&l));
// Find obstacles
r.direction = &l;
object_t *obs = ray_cast(s, &r, NULL, true, d);
if (obs) {
light = light->next;
continue;
}
// Calculate Deffuse part
color_t tmp;
COORD_T cl = vector_dot(&l, N);
if (cl > 0) {
color_scale(&tmp, &light->defuse, cl * o->m->defuse);
color_add(dest, &tmp, dest);
}
// calculate specular part. TODO implement blinn-phong
// Calculate R_m
vector_t R;
vector_scale(&R, N, 2 * vector_dot(&l, N));
vector_sub(&R, &R, &l);
// Add it to the light
cl = 1 * vector_dot(&R, &V);
if (cl > 0) {
cl = pow(cl, o->m->shine);
color_scale(&tmp, &light->specular, cl * o->m->specular);
color_add(dest, &tmp, dest);
}
light = light->next;
}
}
// Calculates the global illumination. Pretty slow
// https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing/global-illumination-path-tracing-practical-implementation
static void env_light(space_t *s, color_t *dest, object_t *o, vector_t *N, vector_t *point, void *seed)
{
// Create new coordinate system where N is up. To do this we need two more vectors for the other axises.
// Create the 2. by setting x or y to 0
vector_t Nt;
if (N->x > N->y) {
vector_set(&Nt, N->z, 0, -N->x);
} else {
vector_set(&Nt, 0, -N->z, N->y);
}
// Normalice
vector_scale_inv(&Nt, &Nt, vector_len(&Nt));
// Create the 3. axis by taking the cross of the other
vector_t Nb;
vector_cross(&Nb, N, &Nt);
// Prepare ray
ray_t r;
r.start = point;
// Tmp color for accumilating colors
color_t acc;
color_set(&acc, 0, 0, 0);
for (unsigned i = 0; i < s->env_samples; i++) {
// Do the monte carlo random distribution thing from the article
COORD_T r1 = ray_rand(seed);
COORD_T r2 = ray_rand(seed);
COORD_T sinTheta = sqrt(1 - r1 * r1);
COORD_T phi = 2 * PI * r2;
// Calculate the random direction vector
vector_t randdir;
vector_set(&randdir, sinTheta * cos(phi), r1, sinTheta * sin(phi));
// Convert to world cordinates using the calculated N vectors.
vector_set(&randdir, randdir.x * Nb.x + randdir.y * N->x + randdir.z * Nt.x,
randdir.x * Nb.y + randdir.y * N->y + randdir.z * Nt.y,
randdir.x * Nb.z + randdir.y * N->z + randdir.z * Nt.z);
// Check the direction for obstacles
r.direction = &randdir;
object_t *obs = ray_cast(s, &r, NULL, true, 0);
if (obs) {
// If we hit something don't add the light
continue;
}
// Add the light together after scaling it
color_t tmp;
color_scale(&tmp, &s->env_color, r1);
acc.r += tmp.r; acc.g += tmp.g; acc.b += tmp.b;
}
// Devide by number of samples and pdf
color_scale(&acc, &acc, ((COORD_T) 1/ s->env_samples) * (2 * PI));
// Add to dest
color_add(dest, dest, &acc);
}
int ray_trace_recur(space_t *s, color_t *dest, ray_t *ray, unsigned hop, COORD_T scale, void *seed)
{
COORD_T dist;
color_t c;
color_set(&c, 0, 0, 0);
object_t *o = ray_cast(s, ray, &dist, false, 0);
if (!o) {
color_add(&c, &c, &s->back);
goto exit;
}
vector_t rdir, rstart;
ray_t r = {start: &rstart, direction: &rdir};
vector_scale(r.start, ray->direction, dist);
vector_add(r.start, r.start, ray->start);
// Calculate normal vector
vector_t N;
obj_norm_at(o, &N, r.start, ray->direction);
// Check if we should calculate light
if (o->m->defuse + o->m->specular > ZERO_APROX) {
// Add all light hitting o at r.start to c
direct_light(s, &c, o, &N, ray->start, r.start);
}
// Calculate environmental light
if (s->env_samples) {
env_light(s, &c, o, &N, r.start, seed);
}
// Calculate reflection vector
if (hop < 10 && o->m->reflective > ZERO_APROX) {
vector_scale(r.direction, &N, 2 * vector_dot(ray->direction, &N));
vector_sub(r.direction, ray->direction, r.direction);
ray_trace_recur(s, &c, &r, hop+1, o->m->reflective, seed);
}
// Scale by the objects own color.
color_scale_vector(&c, &c, &o->m->color);
exit:
// Add it to the result
color_scale(&c, &c, scale);
color_add(dest, dest, &c);
return 0;
}
void ray_trace(space_t *s, unsigned int x, unsigned int y, unsigned samples, color_t *c, void *seed)
{
// Init return color. Will be accumilated with all the detected light.
color_set(c, 0, 0, 0);
// Setup primary ray
ray_t r;
r.start = &s->view.position;
vector_t dir;
r.direction = vector_set(&dir, 0, 0, 0);
// Multiple samples for antialias
// TODO better distribution of antialias probes
for (int i = 0; i < samples; i++) {
color_t ctmp;
color_set(&ctmp, 0, 0, 0);
//memset(&ctmp, 0, sizeof(color_t));
// Multiple samples inside same pixel
COORD_T tmp = (COORD_T) i/ (COORD_T) samples;
viewpoint_ray(&s->view, r.direction, x + tmp, y + tmp);
// Run the recursive ray trace
ray_trace_recur(s, &ctmp, &r, 0, 1, seed);
// Color_add will not go above 1. In this case we don't want that.
c->r += ctmp.r; c->g += ctmp.g; c->b += ctmp.b;
}
// Take the median
if (samples > 1) {
// Same as deviding by samples
color_scale(c, c, 1.0/ (COORD_T) samples);
}
// Add ambient
color_add(c, c, &s->ambient);
}
|