aboutsummaryrefslogtreecommitdiff
path: root/ray.c
blob: 373677366bd0c459757707c060ad5d119f82c321 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#include <stdio.h>
#include <math.h>
#include "vector.h"

#include "ray.h"

// https://en.wikipedia.org/wiki/Line%E2%80%93sphere_intersection
// http://viclw17.github.io/2018/07/16/raytracing-ray-sphere-intersection/
// https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection
COORD_T ray_intersect_sphere(sphere_t *s, ray_t *ray, bool skip_dist)
{
    // Vector between vector start and center of circle
    vector_t oc;
    vector_sub(&oc, ray->start, s->center);

    // Solve quadratic function
	// TODO Not sure if this step i neccesary because dir is unit
    COORD_T a = vector_dot(ray->direction, ray->direction);
    COORD_T b = 2 * vector_dot(&oc, ray->direction);
    COORD_T c = vector_dot(&oc, &oc) - s->radius * s->radius;

    COORD_T d = b * b - 4 * a * c;

    // no intersection
    if (d < 0) {
        return -1;
    }
	if (skip_dist) {
		return 1;
	}

    // Else take the closest intersection, reuse d
	COORD_T q = (b > 0) ? 
		-0.5 * (b + sqrt(d)) :
		-0.5 * (b - sqrt(d));

	COORD_T x0 = q / a;
	COORD_T x1 = c / q;

	// Take the correct result. If one is zero take the other.
	if (x0 <= 0) {
		if (x1 <= 0) {
			return -1;
		}

		x0 = x1;
	}

	// If point is on sphere it will be zero close to zero
	if (x0 < 1e-3) {
		return -1;
	}

	return x0;
}

// Requires that vectors are normalized
// https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-plane-and-ray-disk-intersection
COORD_T ray_intersect_plane(plane_t *p, ray_t *ray, bool skip_dist)
{
	// If zero ray is parralel to plane
	COORD_T nr = vector_dot(p->norm, ray->direction);
	//
	// Take care of rounding errors
	if (nr < ZERO_APROX && nr > -ZERO_APROX) {
		return -1;
	}
	if (skip_dist) {
		return 1;
	}

	// Calculate distance
	vector_t tmp;
	vector_copy(&tmp, p->start);
	vector_sub(&tmp, &tmp, ray->start);

	COORD_T t = vector_dot(&tmp, p->norm) / nr;
	return t;
}

COORD_T ray_intersect(object_t *o, ray_t *ray, bool skip_dist)
{
	switch (o->type) {
		case TYPE_PLANE:
			return ray_intersect_plane(&o->pl, ray, skip_dist);
		case TYPE_SPHERE:
			return ray_intersect_sphere(&o->sph, ray, skip_dist);
		default:
			printf("Unknown object type %d\n", o->type);
			return -1;
	}
}

// If chk is true, will return at first hit less than chk_dist
object_t *ray_cast(space_t *s, ray_t *r, COORD_T *dist_ret, bool chk, COORD_T chk_dist)
{
	object_t *o = s->objects;

	object_t *smallest = NULL;
	COORD_T dist = 0;

	while (o) {
		COORD_T d = ray_intersect(o, r, false);

		if (d > 0) {
			if (chk && chk_dist > d) {
				if (dist_ret) {
					*dist_ret = d;
				}
				return o;
			}
			if (d < dist || smallest == NULL) {
				dist = d;
				smallest = o;
			}
		}
		
		o = o->next;
	}

	if (chk) {
		return NULL;
	}

	if (dist_ret) {
		*dist_ret = dist;
	}
	return smallest;
}

color_t *ray_trace(space_t *s, unsigned int x, unsigned int y)
{
	// Setup primary ray
	ray_t r;
	r.start = &s->view.position;
	r.direction = vector_copy(NULL, NULL);
	viewpoint_ray(&s->view, r.direction, x, y);

	// Cast it
	COORD_T dist;
	object_t *o = ray_cast(s, &r, &dist, false, 0);
	if (!o) {
		return NULL;
	}
	//printf("dist: %f\n", dist);

	// Calculate new ray point
	r.start = vector_scale(NULL, r.direction, dist);
	vector_add(r.start, r.start, &s->view.position);

	// Cast light rays
	light_t *l = s->lights;
	while (l) {
		vector_t tmp;
		// Calculate distance to light
		vector_sub(&tmp, l->pos, r.start);
		COORD_T d = vector_len(&tmp);
		
		// Calculate unit
		vector_scale_inv(&tmp, &tmp, vector_len(&tmp));

		// Find obstacles
		r.direction = &tmp;
		object_t *obs = ray_cast(s, &r, NULL, true, d);

		if (!obs) {
			return color_set(NULL, 100, 100, o->type == TYPE_SPHERE ? 200 :0);
		}
			
		l = l->next;
	}

	return NULL;
}