#include #include #include #include "vector.h" #include "ray.h" #define PI 3.14159265359 // https://en.wikipedia.org/wiki/Line%E2%80%93sphere_intersection // http://viclw17.github.io/2018/07/16/raytracing-ray-sphere-intersection/ // https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection COORD_T ray_intersect_sphere(sphere_t *s, ray_t *ray, bool skip_dist) { // Vector between vector start and center of circle vector_t oc; vector_sub(&oc, ray->start, &s->center); // Solve quadratic function // TODO Not sure if this step i neccesary because dir is unit COORD_T a = vector_dot(ray->direction, ray->direction); COORD_T b = 2 * vector_dot(&oc, ray->direction); COORD_T c = vector_dot(&oc, &oc) - s->radius * s->radius; COORD_T d = b * b - 4 * a * c; // no intersection if (d < 0) { return -1; } if (skip_dist) { return 1; } // Else take the closest intersection, reuse d COORD_T q = (b > 0) ? -0.5 * (b + sqrt(d)) : -0.5 * (b - sqrt(d)); COORD_T x1 = q / a; COORD_T x0 = c / q; // Take the correct result. If one is zero take the other. if (x0 <= ZERO_APROX) { if (x1 <= 0) { return -1; } x0 = x1; } // If point is on sphere it will be zero close to zero if (x0 < ZERO_APROX) { return -1; } return x0; } // Requires that vectors are normalized // https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-plane-and-ray-disk-intersection COORD_T ray_intersect_plane(plane_t *p, ray_t *ray, bool skip_dist) { // If zero ray is parralel to plane COORD_T nr = vector_dot(&p->norm, ray->direction); // Take care of rounding errors if (nr < ZERO_APROX && nr > -ZERO_APROX) { return -1; } if (skip_dist) { return 1; } // Calculate distance vector_t tmp; vector_copy(&tmp, &p->start); vector_sub(&tmp, &tmp, ray->start); COORD_T t = vector_dot(&tmp, &p->norm) / nr; return t; } COORD_T ray_intersect(object_t *o, ray_t *ray, bool skip_dist) { switch (o->type) { case TYPE_PLANE: return ray_intersect_plane(&o->pl, ray, skip_dist); case TYPE_SPHERE: return ray_intersect_sphere(&o->sph, ray, skip_dist); default: //printf("Unknown object type %d\n", o->type); return -1; } } // If chk is true, will return at first hit less than chk_dist object_t *ray_cast(space_t *s, ray_t *r, COORD_T *dist_ret, bool chk, COORD_T chk_dist) { object_t *o = s->objects; object_t *smallest = NULL; COORD_T dist = 0; while (o) { COORD_T d = ray_intersect(o, r, false); if (d > ZERO_APROX) { if (chk && ( chk_dist > d || chk_dist == 0)) { if (dist_ret) { *dist_ret = d; } return o; } if (d < dist || smallest == NULL) { dist = d; smallest = o; } } o = o->next; } if (chk) { return NULL; } if (dist_ret) { *dist_ret = dist; } return smallest; } static void direct_light(space_t *s, color_t *dest, object_t *o, vector_t *N, vector_t *eye, vector_t *point) { ray_t r; r.start = point; // And vector towards viewer vector_t V; vector_sub(&V, eye, point); // Normalice it vector_scale_inv(&V, &V, vector_len(&V)); // Cast light rays light_t *light = s->lights; while (light) { vector_t l; // Calculate distance to light vector_sub(&l, &light->pos, point); COORD_T d = vector_len(&l); // Normalice vector_scale_inv(&l, &l, vector_len(&l)); // Find obstacles r.direction = &l; object_t *obs = ray_cast(s, &r, NULL, true, d); if (obs) { light = light->next; continue; } // Calculate Deffuse part color_t tmp; COORD_T cl = vector_dot(&l, N); if (cl > 0) { color_scale(&tmp, &light->defuse, cl * o->m->defuse); color_add(dest, &tmp, dest); } // calculate specular part. TODO implement blinn-phong // Calculate R_m vector_t R; vector_scale(&R, N, 2 * vector_dot(&l, N)); vector_sub(&R, &R, &l); // Add it to the light cl = 1 * vector_dot(&R, &V); if (cl > 0) { cl = pow(cl, o->m->shine); color_scale(&tmp, &light->specular, cl * o->m->specular); color_add(dest, &tmp, dest); } light = light->next; } } // Calculates the global illumination. Pretty slow // https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing/global-illumination-path-tracing-practical-implementation static void env_light(space_t *s, color_t *dest, object_t *o, vector_t *N, vector_t *point, void *seed) { // Create new coordinate system where N is up. To do this we need two more vectors for the other axises. // Create the 2. by setting x or y to 0 vector_t Nt; if (N->x > N->y) { vector_set(&Nt, N->z, 0, -N->x); } else { vector_set(&Nt, 0, -N->z, N->y); } // Normalice vector_scale_inv(&Nt, &Nt, vector_len(&Nt)); // Create the 3. axis by taking the cross of the other vector_t Nb; vector_cross(&Nb, N, &Nt); // Prepare ray ray_t r; r.start = point; // Tmp color for accumilating colors color_t acc; color_set(&acc, 0, 0, 0); for (unsigned i = 0; i < s->env_samples; i++) { // Do the monte carlo random distribution thing from the article COORD_T r1 = ray_rand(seed); COORD_T r2 = ray_rand(seed); COORD_T sinTheta = sqrt(1 - r1 * r1); COORD_T phi = 2 * PI * r2; // Calculate the random direction vector vector_t randdir; vector_set(&randdir, sinTheta * cos(phi), r1, sinTheta * sin(phi)); // Convert to world cordinates using the calculated N vectors. vector_set(&randdir, randdir.x * Nb.x + randdir.y * N->x + randdir.z * Nt.x, randdir.x * Nb.y + randdir.y * N->y + randdir.z * Nt.y, randdir.x * Nb.z + randdir.y * N->z + randdir.z * Nt.z); // Check the direction for obstacles r.direction = &randdir; object_t *obs = ray_cast(s, &r, NULL, true, 0); if (obs) { // If we hit something don't add the light continue; } // Add the light together after scaling it color_t tmp; color_scale(&tmp, &s->env_color, r1); acc.r += tmp.r; acc.g += tmp.g; acc.b += tmp.b; } // Devide by number of samples and pdf color_scale(&acc, &acc, ((COORD_T) 1/ s->env_samples) * (2 * PI)); // Add to dest color_add(dest, dest, &acc); } int ray_trace_recur(space_t *s, color_t *dest, ray_t *ray, unsigned hop, COORD_T scale, void *seed) { COORD_T dist; color_t c; color_set(&c, 0, 0, 0); vector_t rdir, rstart; ray_t r = {start: &rstart, direction: &rdir}; object_t *o = ray_cast(s, ray, &dist, false, 0); if (!o) { color_add(&c, &c, &s->back); goto exit; } vector_scale(r.start, ray->direction, dist); vector_add(r.start, r.start, ray->start); // Calculate normal vector vector_t N; obj_norm_at(o, &N, r.start); // Check if we should calculate light if (o->m->defuse + o->m->specular > ZERO_APROX) { // Add all light hitting o at r.start to c direct_light(s, &c, o, &N, ray->start, r.start); } // Calculate environmental light if (s->env_samples) { env_light(s, &c, o, &N, r.start, seed); } // Calculate reflection vector if (hop < 2 && o->m->reflective > ZERO_APROX) { vector_scale(r.direction, &N, 2 * vector_dot(ray->direction, &N)); vector_sub(r.direction, ray->direction, r.direction); ray_trace_recur(s, &c, &r, hop+1, o->m->reflective, seed); } // Scale by the objects own color. color_scale_vector(&c, &c, &o->m->color); exit: // Add it to the result color_scale(&c, &c, scale); color_add(dest, dest, &c); return 0; } void ray_trace(space_t *s, unsigned int x, unsigned int y, unsigned samples, color_t *c, void *seed) { // Init return color. Will be accumilated with all the detected light. color_set(c, 0, 0, 0); // Setup primary ray ray_t r; r.start = &s->view.position; vector_t dir; r.direction = vector_set(&dir, 0, 0, 0); // Multiple samples for antialias // TODO better distribution of antialias probes for (unsigned i = 0; i < samples; i++) { color_t ctmp; color_set(&ctmp, 0, 0, 0); //memset(&ctmp, 0, sizeof(color_t)); // Multiple samples inside same pixel COORD_T tmp = (COORD_T) i/ (COORD_T) samples; viewpoint_ray(&s->view, r.direction, x + tmp, y + tmp); // Run the recursive ray trace ray_trace_recur(s, &ctmp, &r, 0, 1, seed); // Color_add will not go above 1. In this case we don't want that. c->r += ctmp.r; c->g += ctmp.g; c->b += ctmp.b; } // Take the median if (samples > 1) { // Same as deviding by samples color_scale(c, c, 1.0/ (COORD_T) samples); } // Add ambient color_add(c, c, &s->ambient); }