/* Opgave 1 { loves(rose, jack). loves(jack, rose). loves(caledon, rose). happy(rose). happy(jack). } { loves(rose, jack). loves(caledon, rose). } { loves(jack, rose). loves(caledon, rose). } { loves(rose, jack). loves(jack, rose). } { loves(rose, jack). loves(jack, rose). loves(caledon, rose). happy(jack). } { loves(rose, jack). loves(jack, rose). loves(caledon, rose). happy(rose). } { loves(rose, jack). loves(jack, rose). loves(caledon, rose). } { loves(rose, jack). loves(jack, rose). happy(jack). } { loves(rose, jack). loves(jack, rose). happy(rose). } { loves(rose, jack). loves(jack, rose). happy(rose). happy(jack) } Well okay i feel stupid We say that the universe U_p = {rose, jack, caledon}. We will then way that the base is: U_b = { loves(x, y) | x, y \in U_p } \cup { happy(x) | x \in U_p } Then all the interpretations are. I = { S | S \subseteq U_b } */ /* Opgave 2 loves(rose, jack). happy(rose) happy(rose) <= loves(rose, jack),loves(jack,rose) We know rose is happy, we do not need to check the predicates. For some reason, kind of TODO. */ /* Opgave 3 I_4 og I_5 er modeller for P, hvor I_4 lige har en extra happy(caledon). Her er I_4 minimal fordi ingen anden model for P er mindre. */ /* Opgave 4 M_1 = T_P(Ø) = {god(odin),son(odin,thor),son(odin,baldr),son(thor,mothi),son(thor,magni)} M_2 = T_P(M_1) = M_1 \cup {demigod(thor),demigod(baldr)} M_3 = T_P(M_2) = M_2 \cup {mortal(mothi),mortal(magni)} */ /* Opgave 5 B -+-> A D -+-> C B -+-> A C ---> A C -+-> B D ---> B D, C -> A, B D -> C -> B -> A Det er stratifyable.