\title{Special Probability Distributions} TODO Look at discrete distributions. \section{Moment Generations} \emph{These are left over from the last lecture.} Two random variables with the same $E[X]$ and $Var(X)$ and variance are not the same. Instead one can calculate the expantance of a higher order of random variable. \begin{definition} The $n$'th moment of a r.v. is defined as: \[ E[X^n] = \sum_{i} x_{i}^{n} p(x_i) .\] \end{definition} % TODO Describe how to extract a moment \begin{definition} The \emph{Moment Generation Function} for a r.v. variable is defined as: \[ \varphi(t) = E[e^{t X}] = \sum_{i} e^{t x_i} p(x_i) .\] The continues version is given by: \[ \varphi(t) = E[e^{t X}] = \int_{-\infty}^{\infty} e^{tx} f(x) \,dx .\] \end{definition} From this function one can generate all moments of the random variable X. The variance can be calculated from the first two moments. \begin{lemma} If two r.v. have the same moments they can be said to be the same. \end{lemma} \section{Discrete Distributions} These are all covered nicely in the book, in section 3.1.5. \subsection{Bernoulli} \begin{definition} If a random variable is \emph{Bernoulli} with probability $p$, its PMF is: \[ P_X(x) = \left\{ \begin{array}{ll} p & \mathrm{for} \: x = 1 \\ 1 - p & \mathrm{for} \: x = 0 \\ 0 & \mathrm{otherwise} \\ \end{array} \right. .\] \end{definition} The Bernoulli random variable can also be called the \emph{Indicator} random variable. Because either event $A$ occurs or not. \subsection{Geometric} Is a series of independent Bernoulli tails, such as the number of coin tosses before a heads occurs. \begin{definition} If X is \emph{geometric} with parameter $p$ its PMF is: \[ P_X(k) = \left\{ \begin{array}{ll} p(1-p)^{k-1} & \mathrm{for} \: k = 1,2,3,... \\ 0 & \mathrm{otherwise} \end{array} \right. .\] where $0 < p < 1$. \end{definition} \subsection{Binomial} Suppose a coin toss with $P(H) = p$. If the coin is tossed $n$ times $X$ defines the number of heads that are observed. \begin{definition} If $X \sim Binomial(n,p)$, X is said to be \emph{binomial} and its PMF is: \[ P_X(k) = \left\{ \begin{array}{ll} \binom{n}{k} p^k (1 - p)^{n-k} & \mathrm{for} \: k = 0,1,2,...,n \\ 0 & \mathrm{otherwise} \end{array} \right. .\] where $0 < p < 1$. \end{definition} \subsection{Pascal} Is also called \emph{Negative binomial} and describes the number of trails before $m$ successes. \begin{definition} If $X \sim Pascal(m,p)$ its PMF is: \[ P_X(k) = \left\{ \begin{array}{ll} \binom{k-1}{m-1} p^m (1-p)^{k-m} & \mathrm{for} \: k=m,m+1,m+2,... \\ 0 & \mathrm{otherwise} \end{array} \right. .\] where $0 < p < 1$. \end{definition} \subsection{Hyper geometric} Suppose that a bag contains $b$ blue and $r$ red marbles, and $k \leq b + r$ marbles are chosen. Then $X$ is the number of chosen blue marbles. \begin{definition} If $X \sim Hypergeometric(b,r,k)$ its PMF is: \[ P_X(x) = \left\{ \begin{array}{ll} \frac{\binom{b}{x} \binom{r}{k-x}}{\binom{b+r}{k}} & \mathrm{for} \: x \in R_X \\ 0 & \mathrm{otherwise} \end{array} \right. .\] where $R_X = \{\max(0, k-r), \max(0,k-r)+1,...,\min(k,b)\}$. \end{definition} \subsection{Poisson} Can be used very well to model random variables in nature. \begin{definition} A random variable with values 0,2,3,... can be said to be Poisson with parameter $\lambda > 0$, with PMF: \[ P(X = i) = e^{-\lambda} \frac{\lambda^i}{i!} .\] \end{definition} The expected value is: $ E[X] = \lambda $ And the variance is: $ Var(X) = \lambda $ The Poisson distribution can be used to approximate binomial distribution. \begin{lemma} Two independent Poisson r.v. added together give a poisson distribution with $\lambda = \lambda_1 + \lambda_2$. \end{lemma} \begin{lemma} The interarrival between events are a exponential random variable with rate $\lambda$. \end{lemma}