\title{Noter til probability m2} Her mapper man fra et sample space S til en variabel. Her kalder man variablen et stort tal R eller sådan noget. Derfor er et random variabel egentlig en transformation mellem S og real tal. \emph{X er en descrete random variable hvis dens range er countable.} For continues random variables the following is true: $$ P(X = x) = 0 $$ \section{Cumulative Distribution Function} Her måler man prob for at ens random er mindre end et bestemt tal. $$ F(x) = P(X \leq x) $$ Man kan også finde det for en range: $$ P(a < X \leq b) = F(b) - F(a) $$ Ved discrete random variables vil denne være en slags trappe. Kan sige at den er \emph{continues from the right} eftersom man har $\leq$ i definition. \section{Probability Mass Function} Works only for discrete random variables. Is defines as the probability that $X = a$: $$ p(a) = P(X = a) $$ From here CDF can be found: $$ F(a) = \sum_{all x \leq a} p(a) $$ \section{Probability Density Function} Her finder man P i et evigt lille interval: In the following formula PDF is $f$. \begin{equation*} \begin{split} F(a) = P(X \in (-\infty,a]) = \int_{-\infty}^a f(x) dx \\ f(a) = \frac{d}{da} F(a) \end{split} \end{equation*} The following must be true: $$ \int_{-\infty}^{\infty} f(x) dx = 1 $$ \section{Multiple Random Variables} Have multiple random variables, which can be or is not correlated. Can define the joined CDF: $$ F_{XY}(x,y) = P(X \leq x, Y \leq y) $$ One can also find the probability of one of the variables. (The \emph{marginal}) $$ F_X(x) = P(X \leq x) = P(X \leq, Y < \infty) = F(x, \infty) $$ One can not go from marginal to the joined, as they do not contain enough information. However if two random variables, and $A$ and $B$ are two sets of real numbers: \[ P(X \in A, Y \in B) = P(X \in A) P(Y \in B)\,. \] % This is only possible if X and Y are \emph{independent}. % \begin{align*} % F_{XY}(x,y) &= F_X(x) \cdot F_Y(x) \\ % p(x,y) &= p_X(x) \cdot p_Y(y) \\ % f(x,y) &= f_X(x) \cdot f_Y(y) % \end{align*} \section{Conditional PDF} If $X$ and $Y$ have a joint PDF, then the conditional PDF of X given that $Y=y$ is \[ F_{X|Y}(x|y) = \frac {f(x, y)} {f_Y(y)} \] There is also one for PMF not listed here. \section{Joined PMF} $$ P_{XY}(x,y) = P(X = x, Y = y) $$ % vim: spell spelllang=da,en