# Noter til probability m2 ## Random variables Her mapper man fra et sample space S til en variabel. Her kalder man variablen et stort tal R eller sådan noget. Derfor er et random variabel egentlig en transformation mellem S og real tal. *X er en descrete random variable hvis dens range er countable.* For continues random variables the following is true: $$ P(X = x) = 0 $$ ## Functions beskriver ens random variable ### Cumulative Distribution function Her måler man prob for at ens random er mindre end et bestemt tal. $$ F(x) = P(X \leq x) $$ Man kan også finde det for en range: $$ P(a < X \leq b) = F(b) - F(a) $$ Ved discrete random variables vil denne være en slags trappe. Kan sige at den er *continues from the right* eftersom man har $\leq$ i definition. ### Probability Mass Function Works only for discrete random variables. Is defines as the probability that $X = a$: $$ p(a) = P(X = a) $$ From here CDF can be found: $$ F(a) = \sum_{all x \leq a} p(a) $$ ### Probability Density Function Her finder man P i et evigt lille interval: Is the derivative of the CDF. $$ F(a) = P(X \in (-\infty,a]) = \int_{-\infty}^a f(x) dx \\ f(a) = \frac{d}{da} F(a) $$ The following must be true: $$ \int_{-\infty}^{\infty} f(x) dx = 1 $$ ## Multiple random variables Have multiple random variables, which can be or is not correlated. Can define the joined CDF: $$ F_{XY}(x,y) = P(X \leq x, Y \leq y) $$ One can also find the probability of one of the variables. (The *marginal*) $$ F_X(x) = P(X \leq x) = P(X \leq, Y < \intfy) = F(x, \infty) $$ One can not go from marginal to the joined, as they do not contain enough information. This is only possible if X and Y are **independent**. $$ F_XY(x,y) = F_X(x) \cdot F_Y(x) \\ p(x,y) = p_X(x) \cdot p_Y(y) \\ f(x,y) = f_X(x) \cdot f_Y(y) $$ ### Joined PMF $$ P_{XY}(x,y) = P(X = x, Y = y) $$ vim: spell spelllang=da,en