import numpy as np import matplotlib.pyplot as plt import time # c-mesh limits limitre = ( -2, 1 ) limitim = ( -1.5, 1.5 ) def numpyiota(grid, T, l, savez): """ Calculates the ι using numpy arrays. This works with both numpy.arrays and numpy.ndarrays Also devides by l :param grid: c-mesh. Shape will be used to make result :param savez: Return z as the second element of returned tuple """ # Preallocate result array and z array rs = np.zeros(grid.shape) z = np.zeros(grid.shape) # Calculate ι for all complex numbers for i in range(l): # This will generate warnings for some of the values rising above T. # Because these values become NAN they are not used, thus the warnings # can be ignored z = z*z + grid # This will generate 1 in all the places # where z < T and zeros elsewhere below = (np.abs(z) < T) # Add this to the result # Because the ones that pass T are 0 # they will stop counting. # # If a specific z never reaches >= T its value in rs will # be l rs += below rs /= l if not savez: z = None return (rs, z) def mangel(pre, pim, T, l, savez): """ Calculate the mangelbrot image (pre, pim) discribes the image size. Use T and l to tune the mangelbrot This function uses the global variables limitre and limitim to determine the c-mesh range. :param pre: Number of real numbers used :param pim: Number of imaginary numbers :param T: Mangelbrot threshold :param l: Iterations :param savez: Return z as the second element of returned tuple """ # Used to calculate c-mesh re = np.linspace(limitre[0], limitre[1], pre) im = np.linspace(limitim[0], limitim[1], pim) # Calculate c-mesh grid = np.add.outer(re, 1j * im) # Calculate ι return numpyiota(grid, T, l, savez)