#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt import time # c-mesh limits limitre = ( -2, 1 ) limitim = ( -1.5, 1.5 ) def lota(c, T, l): """ Implement the ι function used in mangelbrot :param c: Complex number from the c-mesh :param T: Mangelbrot threshold :param l: Iterations """ z = 0 for i in range(l): z = z*z + c # Check if we found or z if np.abs(z) > T: return i # If we did not find z, use l return l def mangel(pre, pim, T, l): """ Calculate the mangelbrot image (pre, pim) discribes the image size. Use T and l to tune the mangelbrot This function uses the global variables limitre and limitim to determine the c-mesh range. :param pre: Number of real numbers used :param pim: Number of imaginary numbers :param T: Mangelbrot threshold :param l: Iterations """ # Preallocate result array rs = np.zeros((pre, pim)) # Calculate scaling variables sre = ( limitre[1] - limitre[0] ) / (pre-1) sim = ( limitim[1] - limitim[0] ) / (pim-1) # Loop all pixels for re in range(pre): for im in range(pim): # Calculate the complex number using the scalers c = limitre[0] + limitim[0] * 1j + sre * re + 1j * sim * im # Calculate the ι rs[re,im] = lota(c, T, l) / l return rs start = time.time() arr = mangel(500, 500, 2, 100) end = time.time() plt.imshow(arr, cmap=plt.cm.hot, vmin=0, vmax=1) plt.savefig("test.png") plt.savefig("test.pdf") print(f"Took {end - start} seconds")