import numpy as np import matplotlib.pyplot as plt import time # c-mesh limits limitre = ( -2, 1 ) limitim = ( -1.5, 1.5 ) def iota(c, T, l): """ Implement the ι function used in mangelbrot Also devides by l :param c: Complex number from the c-mesh :param T: Mangelbrot threshold :param l: Iterations """ z = 0 for i in range(l): z = z*z + c # Check if we found or z if np.abs(z) > T: return (i / l, z) # If we did not find z, use l return (l / l, z) def mangel(pre, pim, T, l, savez): """ Calculate the mangelbrot image (pre, pim) discribes the image size. Use T and l to tune the mangelbrot This function uses the global variables limitre and limitim to determine the c-mesh range. :param pre: Number of real numbers used :param pim: Number of imaginary numbers :param T: Mangelbrot threshold :param l: Iterations :param savez: Return z as the second element of returned tuple """ # Preallocate result array rs = np.zeros((pre, pim)) z = np.empty((pre, pim), dtype=complex) # Calculate scaling variables sre = ( limitre[1] - limitre[0] ) / (pre-1) sim = ( limitim[1] - limitim[0] ) / (pim-1) # Loop all pixels for re in range(pre): for im in range(pim): # Calculate the complex number using the scalers c = limitre[0] + limitim[0] * 1j + sre * re + 1j * sim * im # Calculate the ι (rs[re,im], z[re, im]) = iota(c, T, l) if savez: return (rs, z) else: return (rs, None)