From a2e57f7df5aed74991002b4940c7f1152d83235b Mon Sep 17 00:00:00 2001
From: Julian T <julian@jtle.dk>
Date: Wed, 1 Apr 2020 17:56:56 +0200
Subject: Added first to working mangelbrot implementations for hpp

---
 sem4/hpp/miniproject/naive.py     | 70 +++++++++++++++++++++++++++++++++++++++
 sem4/hpp/miniproject/optimised.py | 60 +++++++++++++++++++++++++++++++++
 2 files changed, 130 insertions(+)
 create mode 100644 sem4/hpp/miniproject/naive.py
 create mode 100644 sem4/hpp/miniproject/optimised.py

(limited to 'sem4/hpp')

diff --git a/sem4/hpp/miniproject/naive.py b/sem4/hpp/miniproject/naive.py
new file mode 100644
index 0000000..765878a
--- /dev/null
+++ b/sem4/hpp/miniproject/naive.py
@@ -0,0 +1,70 @@
+#!/usr/bin/env python3
+import numpy as np
+import matplotlib.pyplot as plt
+import time
+
+# c-mesh limits
+limitre = ( -2, 1 )
+limitim = ( -1.5, 1.5 )
+
+def lota(c, T, l):
+    """
+    Implement the ι function used in mangelbrot
+
+    :param c: Complex number from the c-mesh
+    :param T: Mangelbrot threshold
+    :param l: Iterations
+    """
+
+    z = 0
+    for i in range(l):
+        z = z*z + c
+
+        # Check if we found or z
+        if np.abs(z) > T:
+            return i
+
+    # If we did not find z, use l
+    return l
+
+def mangel(pre, pim, T, l):
+    """
+    Calculate the mangelbrot image
+    (pre, pim) discribes the image size. Use T and l to tune the mangelbrot
+    This function uses the global variables limitre and limitim to determine
+    the c-mesh range.
+
+    :param pre: Number of real numbers used
+    :param pim: Number of imaginary numbers
+    :param T: Mangelbrot threshold
+    :param l: Iterations
+    """
+    
+    # Preallocate result array
+    rs = np.zeros((pre, pim))
+
+    # Calculate scaling variables
+    sre = ( limitre[1] - limitre[0] ) / (pre-1)
+    sim = ( limitim[1] - limitim[0] ) / (pim-1)
+
+    # Loop all pixels
+    for re in range(pre):
+        for im in range(pim):
+            # Calculate the complex number using the scalers
+            c = limitre[0] + limitim[0] * 1j + sre * re + 1j * sim * im
+            
+            # Calculate the ι
+            rs[re,im] = lota(c, T, l) / l
+
+    return rs
+
+
+start = time.time()
+arr = mangel(500, 500, 2, 100)
+end = time.time()
+
+plt.imshow(arr, cmap=plt.cm.hot, vmin=0, vmax=1)
+plt.savefig("test.png")
+plt.savefig("test.pdf")
+
+print(f"Took {end - start} seconds")
diff --git a/sem4/hpp/miniproject/optimised.py b/sem4/hpp/miniproject/optimised.py
new file mode 100644
index 0000000..64af72d
--- /dev/null
+++ b/sem4/hpp/miniproject/optimised.py
@@ -0,0 +1,60 @@
+#!/usr/bin/env python3
+
+import numpy as np
+import matplotlib.pyplot as plt
+import time
+
+# c-mesh limits
+limitre = ( -2, 1 )
+limitim = ( -1.5, 1.5 )
+
+def lota(c, T, l):
+    z = 0
+    for i in range(l):
+        nz = z*z + c
+
+        # Check if we found or z
+        if np.abs(nz) > T:
+            break
+
+        z = nz
+    else:
+        # If we did not find z, use l
+        return l
+
+    return np.abs(z)
+
+def mangel(pre, pim, T, l):
+    # Preallocate result array and z array
+    rs = np.zeros((pre, pim))
+    z = np.zeros((pre, pim))
+
+    # Calculate C matrix
+    re = np.linspace(limitre[0], limitre[1], pre)
+    im = np.linspace(limitim[0], limitim[1], pim)
+
+    # Calculate C by multiplying the scalers in. Remember to move it to the beggining og the c-mesh limit
+    grid = np.add.outer(re, 1j * im)
+
+    for i in range(l):
+        z = z*z + grid
+
+        # Extract all the ones that are under the threshold
+        below = (np.abs(z) < T)
+
+        rs += below
+    
+    rs[ rs==rs.max() ] = l
+    rs /= l
+        
+    return rs
+
+start = time.time()
+arr = mangel(500, 500, 2, 100)
+end = time.time()
+
+plt.imshow(arr, cmap=plt.cm.hot, vmin=0, vmax=1)
+plt.savefig("test.png")
+plt.savefig("test.pdf")
+
+print(f"Took {end - start} seconds")
-- 
cgit v1.2.3