From 57305119e05559c1c37e903aef89cd43f44c42c9 Mon Sep 17 00:00:00 2001
From: Julian T <julian@jtle.dk>
Date: Tue, 11 Feb 2020 11:48:53 +0100
Subject: Added embedded assignment and python assignments

---
 sem4/embedded/emb_m2/emb_m2.ino    | 233 +++++++++++++++++++++++++
 sem4/embedded/emb_m2/myfloat_red.h |  57 ++++++
 sem4/hpp/pythonAB/opg_a_b.ipynb    | 347 +++++++++++++++++++++++++++++++++++++
 3 files changed, 637 insertions(+)
 create mode 100644 sem4/embedded/emb_m2/emb_m2.ino
 create mode 100644 sem4/embedded/emb_m2/myfloat_red.h
 create mode 100644 sem4/hpp/pythonAB/opg_a_b.ipynb

diff --git a/sem4/embedded/emb_m2/emb_m2.ino b/sem4/embedded/emb_m2/emb_m2.ino
new file mode 100644
index 0000000..c6a6a07
--- /dev/null
+++ b/sem4/embedded/emb_m2/emb_m2.ino
@@ -0,0 +1,233 @@
+#include "myfloat_red.h"
+
+// Number of numbers
+#define NN 100
+#define PRINT_PRECISION 10
+
+#define NEXT_OPG(c) Serial.print("\nOpgave "); Serial.println(c++);
+#define AND_OPG(c) Serial.print("and "); Serial.println(c++);
+
+unsigned int opg_count = 1;
+
+void printmydoubarr(myfloat_type *arr, size_t len) {
+	Serial.print("[ ");
+	for(size_t i = 0; i < len; i++) {
+		Serial.print(myfloat2double( &arr[i] ), PRINT_PRECISION);
+		Serial.print(" ");
+	}
+	Serial.println("]");
+}
+
+void printarr(double *arr, size_t len) {
+	Serial.print("[ ");
+	for(size_t i = 0; i < len; i++) {
+		Serial.print(arr[i], PRINT_PRECISION);
+		Serial.print(" ");
+	}
+	Serial.println("]");
+}
+
+unsigned long factorial(unsigned int n) {
+	unsigned long res = 1;
+	for(unsigned int i = 2; i <= n; i++) {
+		res *= i;
+	}
+
+	return res;
+}
+
+double sineTayler(double x, unsigned int n) {
+	double sum = 0;
+
+	for(unsigned int i = 0; i <= n; i++) {
+		sum += ((double)pow(-1, i) / (double)factorial(2 * i + 1)) * (double)pow(x, 2 * i + 1);
+	}
+
+
+	return sum;
+}
+
+#define TAU 1.57079632679
+// After some trial and error the best TAYLORN was 2
+#define TAYLORN 2
+double sine(double x) {
+
+	// Works by finding value in specific -pi/2 to pi/2 period.
+	int period = x / TAU;
+
+	// One cycle of sin takes 4 periods.
+	// If 0 just return the sine approx x
+	// If 1 do negative sine approx on x - TAU
+	// If 2 do negative sine approx x
+	// If 3 do sine approx on period x - TAU
+	x = abs(x - TAU*period);
+
+	double res = 12;
+	
+	switch( abs(period % 4) ) {
+		case 0:
+			res = sineTayler(x, TAYLORN);
+			break;
+		case 1:
+			res = -sineTayler(x - TAU, TAYLORN);
+			break;
+		case 2:
+			res = -sineTayler(x, TAYLORN);
+			break;
+		case 3:
+			res = sineTayler(x - TAU, TAYLORN);
+			break;
+	}
+	// Remember to multiply with sign
+	int sign = period < 0 ? -1 : 1;
+
+	// Should never return because all cases are handled
+	return res * sign;
+
+}
+
+void mean_rel_error(double *da, myfloat_type *mda, size_t len, double *sign) {
+	// Calculate and print the relative error using the formula
+	//  X - x
+	//  -----   Where x is the calculated value and X is the real value( As real as double gets )
+	//    X
+	double errorsum = 0;
+	Serial.print("Rel Err : [ ");
+	for(size_t i = 0; i < len; i++) {
+		//Serial.println(errorsum, PRINT_PRECISION);
+		// Make space for sign
+		if( sign[i] < 0 ) {
+			Serial.print(" ");
+		}
+		// Handle devide by 0
+		double error = da[i] ? abs(da[i] - myfloat2double(&mda[i])) / abs(da[i]) : 0;
+		Serial.print(error, PRINT_PRECISION);
+		Serial.print(" ");
+
+		// Save sum for mean
+		errorsum += error;
+	}
+	Serial.println("]");
+
+	// Calculate mean
+	double mean = errorsum / len;
+	Serial.print("Mean Err: "); Serial.println(mean, PRINT_PRECISION);
+}
+
+void setup() {
+	Serial.begin(115200);
+
+	NEXT_OPG(opg_count);
+	// OPG1. Create some doubles 
+	double da[NN];
+	for(int i = 0; i < NN; i++) {
+		da[i] = ((double)random(-5000, 5000)) / 1000.0;
+	}
+	Serial.print("Original: "); printarr(da, NN);
+
+	NEXT_OPG(opg_count);
+	// OPG2. Convert to mda
+	myfloat_type mda[NN];
+	for(int i = 0; i < NN; i++) {
+		doub2mydouble(da[i], &mda[i]);
+	}
+
+	Serial.print("Mydoub  : "); printmydoubarr(mda, NN);
+
+	NEXT_OPG(opg_count);
+	// OPG3. Calculate the mean relative error
+	mean_rel_error(da, mda, NN, da);
+
+	{
+		NEXT_OPG(opg_count);
+		// OPG4. Compute some stuff
+		double da2[NN];
+		for(int i = 0; i < NN; i++) {
+			da2[i] = da[i] * da[i];
+		}
+		Serial.print("Orig pow: "); printarr(da2, NN);
+
+		NEXT_OPG(opg_count);
+		// OPG5.
+		myfloat_type mda2[NN];
+		for(int i = 0; i < NN; i++) {
+			// This thing sometimes does weird stuff -4.06*(-4.06) -> -16.00
+			mult_float(&mda[i], &mda[i], &mda2[i]);
+		}
+		Serial.print("Mda  pow: "); printmydoubarr(mda2, NN);
+
+		NEXT_OPG(opg_count);
+		// OPG6. Doing the mean error thing
+		mean_rel_error(da2, mda2, NN, da);
+	}
+
+	{
+		// OPG7. Measure execution time
+		NEXT_OPG(opg_count);
+		double a = da[1];
+		unsigned long begin = micros();
+		for(int i = 1; i < NN; i++) {
+			a *= da[i];
+		}
+
+		unsigned long time1 = micros() - begin;
+		Serial.print("Exe time: "); Serial.println(time1);
+		Serial.print("a       : "); Serial.println(a);
+
+		NEXT_OPG(opg_count);
+		// Convert to myfloat
+		myfloat_type f1;
+		doub2mydouble(a, &f1);
+
+		Serial.print("f1      : "); Serial.println(myfloat2double(&f1));
+
+		NEXT_OPG(opg_count);
+		// OPG8-9.
+		begin = micros();
+		for(int i = 0; i < NN; i++) {
+			// Multiply
+			myfloat_type f;
+			mult_float(&f1, &mda[i], &f);
+
+			// Copy back
+			memcpy(&f1, &f, sizeof(myfloat_type));
+		}
+
+		unsigned long time2 = micros() - begin;
+		Serial.print("Exe time: "); Serial.println(time2);
+		Serial.print("f1      : "); Serial.println(myfloat2double(&f1));
+		Serial.println("Overflow");
+
+		NEXT_OPG(opg_count);
+		// OPG10. Difference relative to biggest result
+
+		unsigned long absdiff = abs( time1 - time2 );
+		Serial.print("Abs diff: "); Serial.println(absdiff);
+		double reldiff = (double)absdiff / max(abs(time1), abs(time2));
+		Serial.print("Rel diff: "); Serial.println(reldiff);
+	}
+
+	NEXT_OPG(opg_count);
+	// OPG11. Impl sine
+	// Hardest value should be TAU as it's the furthest from center.
+	unsigned long begin = micros();
+	double res = sine(TAU);
+	unsigned long time1 = micros() - begin;
+	Serial.print("own sin : "); Serial.println(res, PRINT_PRECISION);
+
+	begin = micros();
+	double correct = sin(TAU);
+	unsigned long time2 = micros() - begin;
+	Serial.print("ard sin : "); Serial.println(correct, PRINT_PRECISION);
+
+	double error = correct ? abs(correct - res) / abs(correct) : 0;
+	Serial.print("rel err : "); Serial.println(error, PRINT_PRECISION);
+
+	Serial.print("\nown time: "); Serial.println(time1);
+	Serial.print("ard time: "); Serial.println(time2);
+
+}
+
+void loop() {
+
+}
diff --git a/sem4/embedded/emb_m2/myfloat_red.h b/sem4/embedded/emb_m2/myfloat_red.h
new file mode 100644
index 0000000..b553233
--- /dev/null
+++ b/sem4/embedded/emb_m2/myfloat_red.h
@@ -0,0 +1,57 @@
+/*
+  Low level precision floating point lib
+  Author: Henrik Schiøler
+*/
+
+//low precision floating pt type
+typedef struct myfloat
+{
+        signed char mantissa;
+        signed char exponent;
+} myfloat_type;
+
+
+//convert from double to low precision type
+void doub2mydouble(double arg, myfloat_type *res)
+{
+   int exponent;
+   double temp;
+   exponent = ceil(log(abs(arg))/log(2)); //base 2 logarithm
+   temp=arg*pow(2,7-exponent);
+   res->mantissa = (signed char)temp;
+   res->exponent = exponent-7;
+}
+
+//convert from low precision type to double
+double myfloat2double(myfloat_type *arg1)
+{
+  double res = (double)(arg1->mantissa) * pow(2,arg1->exponent);
+   return res;
+}
+
+//multiply to low precision types
+void mult_float(myfloat_type *arg1,myfloat_type *arg2,myfloat_type *result)
+{
+  int temp;
+  unsigned char sign;
+  
+  sign=0x80 & ((unsigned char)arg1-> mantissa ^ (unsigned char)arg2-> mantissa); //find sign of result 
+  
+  char i=0;
+   temp = (int)(arg1-> mantissa) * (int)(arg2-> mantissa);
+   
+   temp = temp & 0x7f00; //take away sign from product
+  
+   while(abs(temp)>128)
+   {
+      i++;
+      temp=temp>>1;
+   }
+   
+   result->mantissa = (unsigned char) temp;
+   
+   result->mantissa = result->mantissa | sign; //add recorded sign
+   
+   result->exponent = arg1->exponent + arg2->exponent + i;
+   
+}
diff --git a/sem4/hpp/pythonAB/opg_a_b.ipynb b/sem4/hpp/pythonAB/opg_a_b.ipynb
new file mode 100644
index 0000000..7214643
--- /dev/null
+++ b/sem4/hpp/pythonAB/opg_a_b.ipynb
@@ -0,0 +1,347 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Opgaver til python A og B kursus"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Opgave 1\n",
+    "\n",
+    "Make a function that can appproximate an integral using mid point integration:\n",
+    "\n",
+    "$$ \\int_a^b f(x) dx \\approx h \\cdot \\sum_{i=0}^{n-1} f(a + 1/2 h + ih)$$\n",
+    "\n",
+    "1. Make a Python function midpointint(f, a, b, n): that performs the mid point integration where f is a scalar function that can be evaluated as f(x).\n",
+    "2. Compute closed form solutions of $\\int_a^b f(x) dx$ for your favorite $f$ e.g. exp, sin, cos\n",
+    "3. Validate you implementation with the closed form solution"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def midpointint(f, a, b, n):    \n",
+    "    \"\"\"                 \n",
+    "    Approximates int(a to b) f(x) dx using midpoint integration.    \n",
+    "    \"\"\"                 \n",
+    "    h = (b-a)/n         \n",
+    "                        \n",
+    "    # Create a generator and sum it    \n",
+    "    gen = (f(a + 1/2 * h + i * h) for i in range(0, n-1))    \n",
+    "                        \n",
+    "    return h * sum(gen)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "I like $f(x) = e^x$ so that is what we will do. With $a = 0, b = 10$.\n",
+    "\n",
+    "$$\\int_0^{10} e^x dx = e^{10} -1 \\approx 22025$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "21806.207938916818"
+      ]
+     },
+     "execution_count": 10,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "import math\n",
+    "f = lambda x: math.exp(x)\n",
+    "midpointint(f, 0, 10, 1000)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Trying a $f(x) = sin(x)$ with in same interval.\n",
+    "\n",
+    "$$\\int_0^{10} sin(x) dx \\approx 1.8391$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "1.8444773816015885"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "f = lambda x: math.sin(x)\n",
+    "midpointint(f, 0, 10, 1000)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Opgave 3"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Make a Python script, which defines and prints the following integer arrays:\n",
+    "\n",
+    "$$ D_1 = \\left[\\begin{matrix}\n",
+    "    1 & 0 & 1 \\\\\n",
+    "    0 & 2 & 0 \\\\\n",
+    "    1 & 0 & 1\n",
+    "\\end{matrix}\\right]$$\n",
+    "\n",
+    "$$ D_2 = \\left[\\begin{matrix}\n",
+    "    1 & 8 & 1 \\\\\n",
+    "    8 & 2 & 8 \\\\\n",
+    "    1 & 8 & 1\n",
+    "\\end{matrix}\\right]$$\n",
+    "\n",
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 31,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[[1, 8, 1], [8, 2, 8], [1, 8, 1]]"
+      ]
+     },
+     "execution_count": 31,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "D1 = [\n",
+    "    [1, 0, 1],\n",
+    "    [0, 2, 0],\n",
+    "    [1, 0, 1]\n",
+    "]\n",
+    "D2 = [\n",
+    "    [1, 8, 1],\n",
+    "    [8, 2, 8],\n",
+    "    [1, 8, 1]\n",
+    "]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "In the script further compute the following:\n",
+    "\n",
+    "1. Make a list of tuples containing indices to matrix elements $(D_2)_{i,j}$ where $(D_2)_{i,j} > 1$. Print the list and validate that it is correct."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)]"
+      ]
+     },
+     "execution_count": 22,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# This can be done using list comprehention\n",
+    "[(i, j) for (i, r) in enumerate(D2) for (j, c) in enumerate(r) if c > 1]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)]"
+      ]
+     },
+     "execution_count": 26,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# Or generators\n",
+    "def gen():\n",
+    "    for (i, r) in enumerate(D2):\n",
+    "        for (j, c) in enumerate(r):\n",
+    "            if c > 1:\n",
+    "                yield (i, j)\n",
+    "                \n",
+    "list(gen())"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "2. Make a new matrix as:\n",
+    "$$ F = \\left[\\begin{matrix}\n",
+    "D_2 & D_2 \\\\\n",
+    "D_2 & D_2\n",
+    "\\end{matrix}\\right]$$\n",
+    "Print **F** and the shape of **F** as a tuple.\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 39,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(6, 6)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[[1, 8, 1, 1, 8, 1],\n",
+       " [8, 2, 8, 8, 2, 8],\n",
+       " [1, 8, 1, 1, 8, 1],\n",
+       " [1, 8, 1, 1, 8, 1],\n",
+       " [8, 2, 8, 8, 2, 8],\n",
+       " [1, 8, 1, 1, 8, 1]]"
+      ]
+     },
+     "execution_count": 39,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# Multiplying list concatinates it with itself.\n",
+    "\n",
+    "F = [2*r for r in D2] * 2\n",
+    "\n",
+    "#      outer   inner\n",
+    "print((len(F), len(F[0])))\n",
+    "F"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "3. Compute and print the sum of all elements of the **F** matrix."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 59,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "152"
+      ]
+     },
+     "execution_count": 59,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "sum((c for r in F for c in r))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "4. Use Python to determine and print the number of ‘1’, ‘2’ and ‘8’ values in **F**."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 65,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "1: 16, 2: 4, 8: 16\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Not very efficient because we loop multiple times.\n",
+    "count = lambda n: sum((1 for r in F for c in r if c == n))\n",
+    "\n",
+    "print(f\"1: {count(1)}, 2: {count(2)}, 8: {count(8)}\")"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
-- 
cgit v1.2.3