diff options
Diffstat (limited to 'sem6/dig/mm1/opgaver.tex')
-rw-r--r-- | sem6/dig/mm1/opgaver.tex | 169 |
1 files changed, 169 insertions, 0 deletions
diff --git a/sem6/dig/mm1/opgaver.tex b/sem6/dig/mm1/opgaver.tex new file mode 100644 index 0000000..4b8dc91 --- /dev/null +++ b/sem6/dig/mm1/opgaver.tex @@ -0,0 +1,169 @@ +\title{Opgaver til Lektion 1} + +\let\inv\overline + +\section{Opgave 1} + +Perfect induction af $(A + B) \cdot (A + C) = A + (B \cdot C)$: + +\begin{tabular}{lll|ll} \toprule + $A$ & $B$ & $C$ & $(A + B) \cdot (A + C)$ & $A + (B \cdot C)$ \\ \midrule + 0 & 0 & 0 & 0 & 0 \\ + 0 & 0 & 1 & 0 & 0 \\ + 0 & 1 & 0 & 0 & 0 \\ + 0 & 1 & 1 & 1 & 1 \\ + 1 & 0 & 0 & 1 & 1 \\ + 1 & 0 & 1 & 1 & 1 \\ + 1 & 1 & 0 & 1 & 1 \\ + 1 & 1 & 1 & 1 & 1 \\ \bottomrule +\end{tabular} + +Perfect induction af $A \cdot (A + B) = A$: + +\begin{tabular}{ll|ll} \toprule + $A$ & $B$ & $A + B$ & $A$ \\ \midrule + 0 & 0 & 0 & 0 \\ + 0 & 1 & 0 & 0 \\ + 1 & 0 & 1 & 1 \\ + 1 & 1 & 1 & 1 \\ \bottomrule +\end{tabular} + +Perfect induction of $A + \inv{A} = 1$: + +\begin{tabular}{l|ll} \toprule + $A$ & $A + \inv{A} $ & $1$ \\ \midrule + 0 & 1 & 1 \\ + 1 & 1 & 1 \\ \bottomrule +\end{tabular} + +Perfect induction of $\inv{A + B + C} = \inv{A} \cdot \inv{B} \cdot \inv{C}$: + +\begin{tabular}{lll|ll} \toprule + $A$ & $B$ & $C$ & $\inv{A + B + C}$ & $\inv{A} \cdot \inv{B} \cdot \inv{C}$ \\ \midrule + 0 & 0 & 0 & 1 & 1 \\ + 0 & 0 & 1 & 0 & 0 \\ + 0 & 1 & 0 & 0 & 0 \\ + 0 & 1 & 1 & 0 & 0 \\ + 1 & 0 & 0 & 0 & 0 \\ + 1 & 0 & 1 & 0 & 0 \\ + 1 & 1 & 0 & 0 & 0 \\ + 1 & 1 & 1 & 0 & 0 \\ \bottomrule +\end{tabular} + +\section{Opgave 2} + +\begin{opg} + Show that the following + + \begin{equation*} + R = \inv{\inv{A \cdot \inv{B}} \cdot \inv{\inv{A} \cdot B}} + \end{equation*} + + is XOR. +\end{opg} + +Man kan skrive XOR operator som: +\begin{equation*} + A \oplus B = (A + B) \cdot \inv{(A \cdot B)} +\end{equation*} + +\begin{tabular}{ll|ll} \toprule + $A$ & $B$ & $A \oplus B$ & $(A + B) \cdot \inv{(A \cdot B)}$ \\ \midrule + 0 & 0 & 0 & 0 \\ + 0 & 1 & 1 & 1 \\ + 1 & 0 & 1 & 1 \\ + 1 & 1 & 0 & 0 \\ \bottomrule +\end{tabular} + +Kan herefter vise at dette er $\inv{\inv{A \cdot \inv{B}} \cdot \inv{\inv{A} \cdot B}}$. +\begin{equation*} + \inv{\inv{A \cdot \inv{B}} \cdot \inv{\inv{A} \cdot B}} = (A + B) \cdot \inv{(A \cdot B)}\\ +\end{equation*} +Vi kan starte med at bruge DeMorgans lov. +\begin{equation*} + = (A + B) \cdot (\inv{A} + \inv{B}) \\ +\end{equation*} +Man kan skrive det ud. +\begin{equation*} + = A \cdot \inv{A} + A \cdot \inv{B} + B \cdot \inv{A} + B \cdot \inv{B} +\end{equation*} +Vi kan bruge axiomen $X \cdot \inv{X} = 0$. +\begin{equation*} + = A \cdot \inv{B} + B \cdot \inv{A} +\end{equation*} +Og nu kan vi bruge DeMorgans lov på venstre side. +\begin{equation*} + \inv{ \inv{A \cdot \inv{B}}} + \inv{ \inv{\inv{A} \cdot B}} = A \cdot \inv{B} + B \cdot \inv{A} +\end{equation*} +Og dette passer hvis man lader inverserne gå ud med hinnanden. + +\section{Opgave 3} + +\begin{opg} + Reduce the following expressions: + \begin{align*} + A \cdot \inv{B} \cdot \inv{C} + A \cdot B \cdot \inv{C} + \inv{A} \cdot \inv{C} \\ + M \cdot \inv N \cdot P + \inv L \cdot M \cdot P + \inv L \cdot M \cdot \inv N + \inv L \cdot M \cdot N \cdot \inv P + \inv L \cdot \inv N \cdot \inv P + \end{align*} +\end{opg} + +Vi starter med den første opgave. +Her tager vi og bruger den distributive teorem et par gange. +\begin{equation*} + \begin{split} + \inv{C} \cdot (A \cdot \inv B + A \cdot B + \inv A) \\ + \inv{C} \cdot (A \cdot (\inv B + B) + \inv A) + \end{split} +\end{equation*} +Nu kan vi bruge axiomen \(X + \inv X = 1\) og \(X \cdot 1 = X\). +\[ + \inv C \cdot (A + \inv A) = \inv C +\] + +Lad og tage den anden. +Vi starter med at bruge den distributive teorem et par gange. +\begin{equation*} + \begin{split} + M \cdot (\inv N \cdot P + \inv L \cdot P + \inv L \cdot \inv N + \inv L \cdot N \cdot \inv P) + \inv L \cdot \inv N \cdot \inv P \\ + M \cdot (\inv N \cdot P + \inv L \cdot (P + \inv N + N \cdot \inv P)) + \inv L \cdot \inv N \cdot \inv P + \end{split} +\end{equation*} +Den inerste parantes er på formen $A + B + \inv A \cdot \inv B$. +Dette kan vise altid er lig med $1$, ved at starte med DeMorgans lov. +\[ + A + B + \inv{A + B} +\] +Ud fra axiomen $X + \inv X = 1$ kan vi se at dette altid er 1. +Nu kan vi sætte dette ind og bruge den distributive lov igen omvendt. +\[ + M \cdot (\inv N \cdot P + \inv L) + \inv L \cdot \inv N \cdot \inv P = M \cdot \inv N \cdot P + M \cdot \inv L + \inv L \cdot \inv N \cdot \inv P +\] +Mere kan jeg desværre ikke reducere den. + +\section{Opgave 4} + +\begin{opg} + Find expression +\end{opg} + +\begin{verbatim} +X = ~(A * B) +Y = ~(A * X) +Z = ~(B * X) +C = ~(Y * Z) +D = ~X + +C = ~(~(A * ~(A * B)) * ~(B * ~(A * B))) +D = ~~(A * B) = A * B +\end{verbatim} + + +\section{Gate Input Cost} + +Skriver lige hurtigt formlen op for GIC. +\begin{verbatim} + GIC = LC + number of terms in boolean expr + number of unique inversions +\end{verbatim} +Her er LC litteral cost, hvilket er antallet af ikke unikke variabler. + +GIC kan også findes ved at tælle antal inputs i et logic diagram. |